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Abstract

Numerical analysis of Markovian models is relevant for

performance evaluation and probabilistic analysis of sys-

tems’ behavior from several fields such as Bioinformatics,

Economics, and Engineering. These models can be repre-

sented in a compact fashion using Kronecker algebra. The

Vector-Descriptor Product is the key operation to obtain

stationary solutions of Kronecker-based descriptors. Due

to its complexity, the numerical algorithms are usually CPU

intensive, requiring alternatives such as data partitioning in

order to produce results in less time. This paper proposes

three OpenMP-based parallel implementations for solving

descriptors to be deployed on shared-memory machines. We

evaluated the implementations in a multi-core machine and

obtained a speed-up near to eight when using eight cores

with Intel Hyper-Threading technology.

1. Introduction

Kronecker descriptors [15] are compact structures com-

monly used to describe very large Markovian systems. A

myriad of structured formalisms [2] that use Kronecker

(tensor) algebra as a compact representation is available to

the research community, e.g., Stochastic Petri Nets (SPN),

Process Algebra (PEPA), and Stochastic Automata Net-

works (SAN) [12], among others.

Vector-Descriptor Product (VDP) is the key operation to

achieve a stationary regime and subsequent performance in-

dices of systems represented by descriptors. This opera-

tion multiplies a probability vector by a descriptor, which

is composed of tensor product terms [12]. Each term cor-

responds to a set of small matrices and tensor product op-

erators. Specialized numerical algorithms have been pro-

posed throughout the years, namely the traditional Shuf-

fle algorithm [11, 12] and the flexible Split algorithm [10].

The main difference between them concerns the additional
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memory requirements and the computational cost in terms

of floating-point multiplications.

The processing power and storage of the current com-

puting resources have enabled the evaluation of Markovian

models with large state spaces; which are required in several

fields from science and engineering. However, as numeri-

cal solution consists of an iterative process, the step named

VDP is repeated several times [15] (e.g. Power method,

Arnoldi, and GMRES). Moreover, with the increasing com-

plexity related to the size of the models, the processing time

becomes considerably high. Therefore, as most of the cur-

rent machines are based on multi-core technology, the cre-

ation of parallel solutions to accelerate the achievement of

results becomes essential.

We have developed a parallel solution of Kronecker De-

scriptors [8], which considered data partitioning strategies

for the Split Algorithm in a cluster architecture. However,

the parallel approach using MPI [13] routines presented a

low scalability, mainly due to the vector update operation at

each iteration. Tadonki and Philippe [16] have proposed a

parallel multiplication of a vector by a Kronecker product

of matrices, which differs from our work since we multiply

a vector by a Kronecker descriptor. In the context of con-

tinuous time Markov chains, Kemper [14] has modified the

Kronecker representation for a parallel matrix-vector mul-

tiplication. His implementation, based on POSIX threads,

uses a fast multiplication scheme and no write conflicts on

iteration vectors. Kemper obtained a speed-up of approxi-

mately five using eight processors.

In order to achieve better speed-ups in comparison to

existing solutions, this paper proposes and evaluates three

parallel implementations of the Split algorithm for shared-

memory machines. These implementations are based on

different scheduling strategies using OpenMP (OpenMP

Multi-Processing) [6]. We have developed the parallel im-

plementations using existing techniques of static and dy-

namic load balancing and data partitioning presented in the

literature [17, 3]. From our experimental results, we have

obtained a speed-up near to eight, using eight cores with

Intel Hyper-Threading technology.



2. Split Algorithm

The Split algorithm is known as a Vector-Descriptor

Product algorithm [9, 10, 12] for solving Kronecker based

descriptors. Basically, the method performs the multipli-

cation of a probability vector (state space sized) by sets of

matrices that compose a generic tensor product term of N

matrices [11, 12]. This process is repeated for all T ten-

sor product terms in a descriptor to complete a step in the

iterative numerical method (e.g. Power method).

The algorithm defines a cut-parameter σ which separates

the tensor product term in two different sets of matrices [9].

The first selected set is treated in a sparse-like manner (ma-

trices aggregation) performing non-zero elements combina-

tions. Each combination done in this part is called AUNF

(Additive Unitary Normal Factor) or simply scalar. This

scalar has a given value and indices to access determined

positions in the probability vectors during the VDP opera-

tion. A contiguous slice of the input vector is taken to be

multiplied by this scalar. The second selected set is com-

posed of the remaining matrices of the tensor product term,

and they are treated with shuffling operations, maintaining

the original tensor structure (named shuffle-like part).

Figure 1 illustrates the operation flow in a sequential im-

plementation of the Split algorithm. The first steps (a) and

(b) are executed to initially setup the method loading both

matrices and vectors into the memory. The step (c) referred

to the creation of AUNFs (scalars) using the first set of ma-

trices. These non-zero values are stored in memory with

information about their related indices in the vector. Steps

(d) and (e) are correspondent to the processing core.

(a)

(b)

(c)

(d)

(e)

(f)

Iterative method convergence test

Results stored in a probability vector

(e.g. Power method)

(state space sized vectors)

Initialize probability vectors positions

Create all AUNFs storing in a list

(of all T tensor product terms)

(of all T tensor product terms)

Execute Split algorithm

(e.g. steady-state probabilities)

(all T tensor product terms)

Load model descriptor

Figure 1. Sequential VDP method.

The execution of the iterative method in an efficient man-

ner is dependable of several factors: the size of the analyzed

model, the number of matrices represented in a Kronecker

fashion, the computational cost related to the sparsity of

these matrices, and the behavior adopted by Split setting the

cut parameters for each tensor product term. More details

about the numerical methods for Vector-descriptor Product

can be found in the literature [12, 10, 9].

3. Descriptor Partitioning

3.1 Partitioning per Term

One partitioning approach is based on the total num-

ber of Kronecker tensor product terms, i.e., a set of

tensor terms that form a bag-of-tasks to be distributed

among available processors. The computational cost

in multiplications related to each term is given by
(

∏σj

i=1 nz
(i)
j

)(

∏N
i=σj+1 n

(i)
j

)

, where nz
(i)
j corresponds to

the total number of non-zero elements in the j-th term and
∏N

i=σj+1 n
(i)
j is the size of the vector to be multiplied. The

total number of tasks to be performed in parallel depends

on the model characteristics. As presented, the cost of each

tensor product term is defined mainly by the number of

AUNFs and the value of the cut-parameter σ. In this ap-

proach, if we have tasks with very different costs and in

limited number, it can be difficult to achieve an efficient

load balancing and scalability of the parallel solution.

3.2 Partitioning per AUNF

A different partitioning approach is to distribute the com-

putation of each AUNF, or a set of them, to each processor.

In the Split algorithm, every tensor product term is subdi-

vided in smaller tasks corresponding to AUNFs. All the K

AUNFs of the j-th term have the same cost, and if summed,

the amount is equal to the total cost of the term. The compu-

tation of each AUNF represents an independent task, where

a slice of the probability vector is multiplied for AUNF, and

then the result is accumulated in a probability vector. The

total number of AUNFs per term is given by the equation

Kj =
∏σj

i=1 nz
(i)
j . This approach is possible because every

term has at least one AUNF. In comparison to the previous

approach described in Section 3.1, we have a assembled a

number of tasks possibly larger with lower computational

costs, thus enabling better load balancing and scalability.

4. Parallel Implementation

We have developed three parallel implementations of

the Split algorithm for shared-memory machines using the

OpenMP standard and the C++ language. The implemen-

tations differ in the data partitioning approaches and task

scheduling strategies.



At the beginning of each iteration of the numerical

method, a parallel region is created. The Split algorithm

works with loops for the solution of each tensor product

term and each AUNF. Thus, the parallelization is accom-

plished through the distribution of loop iterations across the

threads. The probability vector π is a shared variable that

is updated at the end of each task. Therefore, this variable

access must be protected to avoid data race conditions. For

enabling multiple threads to update the shared vector π, we

have used the atomic construct that is an efficient alternative

to the critical construct [6].

4.1 OpenMP-based scheduling

The first two parallel implementations use the for work-

sharing construct from OpenMP. They also use the sched-

ule clause, which specifies how the iterations of the loop

are assigned to the threads. We choose the dynamic sched-

ule with task granularity equals to one. In this scheduling

strategy, one iteration at a time is assigned to each thread,

until there are no more iterations available [6]. Moreover,

the dynamic schedule can be more suitable to unbalanced

workloads. Algorithm 1 presents the first parallel imple-

mentation that uses partitioning per term.

Algorithm 1, a parallel region is created with the direc-

tive #pragma omp parallel (line 1) and the loop is paral-

lelized via the for construct (line 2). In this implementa-

tion, there are T terms to be distributed among NT threads

following a dynamic scheduling strategy. Using the private

clause, we specify that each thread has its own copy of vari-

ables j, k, and vector υ. In addition, the shared variables are

the list A of AUNFs and the vector π. As multiple threads

may simultaneously write at the same positions of π, we

treat the region (line 7) with the atomic construct. The end

of parallel block occurs after line 7. Algorithm 2 presents

the second implementation that uses partitioning per AUNF.

Algorithm 1: OMPa - Partitioning per term j

#pragma omp parallel for private(j,k,υ) schedule(dynamic,1)1

num threads(NT)

for j ∈ [1 . . . T ] do2

for k ∈ [1 . . . Kj ] do3

υ = A[j].scalar[k] × π04

. . .5

#pragma omp atomic6

π += υ7

Algorithm 2 works in a similar way to Algorithm 1.

However, to perform the partitioning per AUNF, Algo-

rithm 2 has a global list of AUNFs and contains a single

loop to iterate over the tasks. Therefore, there is one set of

tasks consisting of all AUNFs of the descriptor to be dis-

tributed across the threads.

Algorithm 2: OMPb - Partitioning per AUNF k

#pragma omp parallel for private(k,υ) schedule(dynamic,1)1

num threads(NT)

for k ∈ [1 . . . K] do2

υ = A.scalar[k] × π03

. . .4

#pragma omp atomic5

π += υ6

4.2 Manual static scheduling

As the schedule(static) clause from OpenMP does not

handle heterogeneous tasks, we have implemented a man-

ual static scheduling, which is based on worst-fit decreasing

solution for the bin packing problem [7]. The main idea of

this strategy is to sort the tasks in descending order based on

the computational costs of each task and then schedule one

by one, beginning from the least loaded thread. Figure 2

presents an example.

Order of scheduling:

k14 k15

k10 k11 k13k12

k1 k2 k3 k4 k5 k6 k7 k8 k9

j2 = k10 . . . k13 (#Cost = 8 each)

j3 = k14 . . . k15 (#Cost = 20 each)

j1 = k1 . . . k9 (#Cost = 3 each) k14 k5 k9t1 =

#Cost = 26

k15 k6t2 =

#Cost = 23

k10 k12 k1 k3 k7t3 =

#Cost = 25

k4 k8k11 k2k13t4 =

#Cost = 25

#Threads = 4
#Total cost = 99

j2j3 j1

Figure 2. Static scheduling strategy.

Figure 2 exemplifies the static scheduling based imple-

mentation, where there are fifteen AUNFs k1 . . . k15 to be

distributed among four threads t1 . . . t4. All AUNFs of each

tensor product term j have the same computational cost.

After ordering all the tasks, the first tasks of the term j3,

which have the highest costs, are distributed one by one for

the less loaded thread, and second the tasks of the term j2
do the same, and so on.

Algorithm 3 introduces the third implementation that

performs a partitioning per AUNF in order to achieve better

load balancing. The algorithm starts by creating a parallel

region (line 1), which defines the number of threads and the

private variables. The tasks that each thread handle are de-

fined by two indices, start and end, stored in the B structure

(line 4). Each thread reads the indices of its tasks through

its identifier, called tid. The value stored in the variable tid

corresponds to the thread number returned by the function

omp get thread num(), available in the OpenMP library.



Algorithm 3: Manual - Partitioning per AUNF k

#pragma omp parallel private(j,k,tid,υ) num threads(NT)1

tid = omp get thread num()2

for j ∈ [1 . . . T ] do3

for k ∈ [B[tid].term[j].start . . . B[tid].term[j].end] do4

υ = A[j].scalar[k] × π05

. . .6

#pragma omp atomic7

π += υ8

5. Performance Analysis

We have performed experiments in a shared-memory

machine composed of two Intel Xeon E5520 (Nehalem)

Quad-Core processors with Intel Hyper-Threading technol-

ogy and 16 GB of main memory. Each processor works

with 2.27 GHz frequency, 8 MB L3 cache shared by all

cores, 1 MB L2 cache and 128 KB L1 cache per core. The

software stack is a Linux O.S. with g++ 4.2.4 compiler that

implements the OpenMP 2.5 version.

The experiments consider two types of models and two

input sizes for each model. The main difference between

the models is heterogeneity and number of tasks involved

in the computation. Each model requires a hundred itera-

tions of the numerical method to understand its behavior.

We have executed each model five times for 2, 4, 8 and 16

threads in order to obtain their speed-up. In addition, we

have collected data related to the models, such as number

of tasks and average costs of processing each task.

5.1 Resource Sharing model

The classical Resource Sharing model maps R shared

resources to P processes. The correspondent Markovian

model [4] presents each process with two states: idle or

busy. The number of available resources is represented by a

function that only grants access to the busy state if there is

less than R processes in the busy state. The descriptors an-

alyzed are composed of more than 40 tensor product terms

(for P = 22 and R = 14; and P = 24 and R = 18) to be

multiplied by a probability vector using Split algorithm, in

an iterative process. The details of the input parameters for

this model are presented in Table 1. For space constraint

reasons, we present only two input sizes, one medium (P =

22 and R = 14) and one large (P = 24 and R = 18). For

a small size model, we believe a user would run it sequen-

tially on a single processor.

Figure 3 (a) depicts the speed-up of the three implemen-

tations: OMPa (Algorithm 1), OMPb (Algorithm 2), and

Manual (Algorithm 3). Although the three implementations

have a similar speed-up curve, OMPb has a better speed-up,

obtaining up to 7.50. This occurs because OMPb uses dy-

namic scheduling, different from the Manual approach, and

Table 1. Resource Sharing model parameters.

Medium model size: P=22, R=14

Tensor Product Terms j
Total of Total of

AUNFs Mults

1 .. 44 616 1,291,845,632

Size of vector π 62,914,560

Average Time per iteration (seconds) 43.25

Total iterations 148

Total time spent (hours) 1.78

Large model size: P=24, R=18

Tensor Product Terms j
Total of Total of

AUNFs Mults

1 .. 48 864 7,247,757,312

Size of vector π 318,767,104

Average Time per iteration (seconds) 235.54

Total iterations N/A

Total time spent (days) > 15

has smaller granularity compared to OMPa, which allows

OpenMP to have a better load balancing and scalability.
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Figure 3. Resource Sharing model.

Figure 3 (b) presents the speed-up with a large input size

(P = 24 and R = 18). In this case, the three implemen-

tations still scale up and their speed-up curves are similar.

However, different from the previous model size, the speed-

up values of the three implementations are approximately

the same. The reason is that the task cost is four times big-

ger than the previous model (Table 1). The higher the cost

the longer the processors remain working, thus making the

task distribution strategy used less important.



5.2 Master-slave model

The Master-slave model refers to an evaluation of the

Master-slave parallel implementation of the Propagation al-

gorithm considering asynchronous communication. The

Markovian model [1] contains a Master automaton, one

huge Buffer automaton, and N Slaves. The Master presents

three states: Tx (transmitting), Rx (receiving) and ITx

(idle). The Buffer has K positions (states) plus an empty

state 0. A Slave presents three states: I (idle), Pr (process-

ing) and Tx (transmitting). The model has events related

to the Master and Slaves coordinated activities controlling

also the Buffer, which is also accessed by the slaves. The

descriptors analyzed in this section are composed of more

than 50 tensor product terms (for N = 12 and K = 60; and

N = 14 and K = 12) to be multiplied by a probability vec-

tor also using Split algorithm.

Table 2. Master-slave model parameters.

Medium model size: N=12, K=60

Tensor Product Terms j
Total of Total of

AUNFs Mults

1 .. 12 12 389,014,812

13 .. 24 12 129,671,604

25 .. 25 1 61

26 .. 26 32,417,901 32,417,901

27 .. 27 245,760 245,760

28 .. 39 720 127,545,840

40 .. 51 1,440 765,275,040

Total AUNFs for all terms 32,665,846

Size of vector π 97,253,703

Average time per iteration (seconds) 37.61

Total iterations 3,969

Total time spent (hours) 41.46

Large model size: N=14, K=12

Tensor Product Terms j
Total of Total of

AUNFs Mults

1 .. 14 14 803,538,792

15 .. 28 14 267,846,264

29 .. 29 1 12

30 .. 30 57,395,628 57,395,628

31 .. 31 180,224 180,224

32 .. 45 154 22,320,522

46 .. 59 308 66,961,566

Total AUNFs for all terms 57,576,343

Size of vector π 172,186,884

Average time per iteration (seconds) 71.60

Total iterations 2,260

Total time spent (hours) 44.95

Figure 4 (a) presents the speed-up curve for the medium

model size. Although task heterogeneity makes task

scheduling more complex, our parallel implementations

generated speed-up of up to 4.80, which is approximately

80% of improvement compared to the sequential version.

Moreover, OMPb did not perform as good as in the previous

model. One of the reasons is that the schedule(dynamic,1)

clause produces an overhead when the number of iterations

to distribute tasks is large. The number of tasks to distribute

across the threads is considerably larger in OMPb compared

to OMPa (32,665,846 vs 51, see Table 2). We are currently

investigating the use of task ordering, which may improve

speed-up factors especially when the number of tasks and

their heterogeneity is high. The manual static task distri-

bution eliminates the overhead of the dynamic scheduling,

resulting in a better speed-up compared to OMPb. Although

one could use the schedule(static) clause, such a clause does

not consider the task heterogeneity imposed by this second

model, proving then poor performance gains.

The results for the large model size (N = 14 and K =

12), presented in Figure 4 (b), are similar to the medium

model size. The main difference is that OMPa and Man-

ual produce similar speed-up values due to the same reason

presented in the previous model; i.e. the higher the compu-

tational cost to process tasks and the number of tasks, the

less important the task distribution strategy.
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Figure 4. Master-slave model.

5.3 Synchronization overhead analysis

Parallel solutions developed via the OpenMP API could

have overheads related to the thread management, schedul-

ing clauses, time spent in barriers, among others [6]. In

order to measure overheads in the parallel implementation,

one can make a comparison between the time spent to ex-

ecute the sequential program against the time spent to exe-

cute the parallel program using 1 thread. Here we measured

the synchronization overhead [5] by executing the parallel

implementation of OMPa using one thread with and without

the atomic clause.



From Table 3 we observe the higher overheads in Master-

slave model compared to the Resource Sharing model. In

order to verify the cause of the high overheads, we com-

puted the number of accesses to atomic regions.

Table 3. Number of atomic region accesses.

Model Overhead (%) Accesses (omp atomic)

RS large input size 15.99 7,247,757,312

MS large input size 49.77 4,454,718,698

MS medium input size 40.88 2,222,200,642

RS medium input size 14.51 1,291,845,632

The results show that there is no relation between the

number of accesses to atomic regions with the level of over-

head measured. During our experiments, we observed that

the overheads are actually due to the number of accesses to

the same vector positions, i.e. the access pattern is the main

overhead cause.

6. Concluding Remarks

This paper presented three parallel implementations of

Vector-Descriptor Product using the Split algorithm. Our

implementations were developed using OpenMP for shared-

memory architectures. We performed experiments using

two types of models with two input sizes each. From our

experiments, we obtained a speed-up value of up to eight

using eight cores with Intel Hyper-Threading technology.

The differences of the three implementations lay in the

task scheduling strategy and task granularity. Two of the

presented implementations are based on OpenMP standard

and the third one is based on manual static task schedul-

ing. For the model consisting of homogeneous tasks, the

dynamic scheduling strategy using fine-grain tasks is more

suitable than the static one. The reason is that the number

of the tasks is minimal to generate an overhead using the

clause schedule(dynamic).

On other hand, for the second model consisting of het-

erogeneous tasks and a large number of iterations, the over-

head imposed by the clause schedule(dynamic) produces

negative effects in the speed-up. To minimize the overhead

effect, two approaches can be used: increase the granularity

of tasks keeping the dynamic scheduling clause, or use the

same task granularity, but with a manual static scheduling.

Another source of overhead found in our experiments is the

use of the atomic clause, which depending on the usage pat-

tern, may have a considerable impact on the execution time.

The implementations presented in this paper, thus

achieve faster results compared to previous solutions, which

have a direct impact on large Markov models based in Kro-

necker representation. These models are common in sev-

eral fields such as Bioinformatics, performance prediction

of systems, as well as economics and finance applications.
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