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Abstract—Yield forecast is essential to agriculture stakeholders
and can be obtained with the use of machine learning models
and data coming from multiple sources. Most solutions for yield
forecast rely on NDVI (Normalized Difference Vegetation Index)
data which, besides being time-consuming to acquire and process,
only allows forecasting once crop season has already started.
To bring scalability for yield forecast, in the present paper we
describe a system that incorporates satellite-derived precipitation
and soil properties datasets, seasonal climate forecasting data
from physical models and other sources to produce a pre-season
prediction of soybean/maize yield—with no need of NDVI data.
This system provides significantly useful results by the exempting
the need for high-resolution remote-sensing data and allowing
farmers to prepare for adverse climate influence on the crop
cycle. In our studies, we forecast the soybean and maize yields
for Brazil and USA, which corresponded to 44% of the world’s
grain production in 2016. Results show the error metrics for
soybean and maize yield forecasts are comparable to similar
systems that only provide yield forecast information in the first
weeks to months of the crop cycle.

I. INTRODUCTION

Agriculture is an industry sector that is benefiting strongly
from the development of sensor technology, data science, and
machine learning (ML) techniques in the latest years. These
developments come to meet environmental and population
pressures faced by our society, where reports indicate a need
of strong global agriculture yield increase to provide food for
a growing population in a warmer planet [1].

Yield forecast is one of the tasks that can be performed by
current ML algorithms [2], [3], [4]. Field sensors, satellites,
unmanned aerial vehicles (UAVs), and farming equipment can
provide a significant amount of data on soil conditions, plant
physiology, weather, climate, and several of the processes
taking place in a farm. These datasets allow the creation
of classification and forecast models that can be extremely
helpful to agriculture production.

Most of the work done in the field of yield forecasting
via ML makes use of some sort of remote sensing data over
the farm, specially in the form of Normalized Difference
Vegetation Index (NDVI) [5], a popular indicator of vegetation
activity that can be retrieved from near-infrared and red spec-
tral channels. These indexes have the advantage of providing
direct observations of a farm and can be useful to follow the
crop cycle. While these datasets provide insights on near real
time to problems such as diseases and deficiencies, they allow
yield forecasting only after planting occurs, as one can analyze
crop development and try to predict its final outcome after
harvesting.

In this paper, we introduce an ML-based system using data
from multiple sources to perform soybean yield forecasting
before the start of the crop season—process known as pre-
season forecasting. The system is composed of a recurrent
neural network (RNN) trained with precipitation, temperature,
and soil properties as features and historical observed soybean
and/or maize yield at municipality level for 1500+ cities in
Brazil and USA as labels. We considered Brazil and the
USA in our case studies as they are two of the largest
crop producers of the world, accounting for 28% and 35%
of soybean global production and 6% and 36% of maize
global production respectively as of 2016 [6]. Operationally,
the meteorological data is provided by a reanalysis-bases
seasonal forecast product of temperature and precipitation,
which allows for forecasting up to seven months in the future.
Results are comparable and in some cases superior to similar
models that need remote sensing data over the farm, thus only
capable of providing a forecast in the first weeks/months of
the crop cycle (early season forecast).

The two major contributions of this work are:

• A yield forecast system based on fewer data requirements
compared to existing yield forecast solutions which de-
mand large amounts of remote sensing data. Our system
retrieves the necessary climate and soil properties data
for a given coordinate automatically from an appropriate
source. Another advantage is that the system works also
on large regions, and provides forecasts at a resolution
compatible with best input data resolution, which in the
case is 250m originally from the soil data.

• The capability of forecasting yield before the beginning
of the crop season. This provides users the capability to
perform strategy changes, like choosing a more robust
genetic variation before planting or even changing the
crop type, in order to accommodate for extreme climatic
variations further ahead in the crop cycle.

The scalability for yield forecast comes from our obser-
vation that a neural network model can detect and exploit
redundant information coming from soil and weather data. We
also observed the neural network model can learn an implicit
representation of the cycles of the crops, which is further
detailed in this paper.

The paper is organized as follows. In Section II, we discuss
existing work on yield forecast. We introduce the proposed
system containing the model RNN architecture with imple-
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Fig. 1: System Architecture. The system we built can perform yield forecasts on the fly. It is able to do so by, upon user
request (1), downloading cached weather forecast (2, 4) and soil properties data from RESTful APIs (3), and combining them
to issue yield forecasts (5) using a trained deep neural network model. Both the APIs and the system work with bounding
boxes for issuing yield forecasts for regions over the globe.

mentation justifications in Section III. In Section IV we present
the system evaluation followed by conclusions in Section V.

II. RELATED WORK

Yield forecast is an important service of agriculture com-
putational systems [7], [8]. In this section we cover a few
efforts in this area, highlighting some with machine learning
components.

Kogan et al. [9] compared different methods for winter
wheat yield forecasting: using remote sensing observations,
meteorological data and biophysical models. The two former
methods consisted respectively of linear regression models
using NDVI data at 250m resolution and data from 180
weather stations for a 13-year period as predictors. The third
method is based on the application of a biophysical process-
based crop model, an algorithm that models phenology, canopy
development, biomass accumulation, water stress and many
other plant components. In this case, the World Food Studies
(WOFOST) model [10] was used. All three approaches were
used to perform forecast 2–3 months before harvest and the
biophysical model showed the best results in terms of root
mean squared error (RMSE). The NDVI-based and the me-
teorological data-based methods showed similar performance
when minimum input data requirements were met.

In studying dryland maize in South Africa, Estes et al. [11]
developed three empirical models that were compared against
the CERES-maize model of the DSSAT platform [12]. Two
of the empirical models were based on maximum entropy
(MAXENT) [13]: one trained on all national crop distributions
points and the other trained with the top producing localities.
The third method used a generalized additive model (GAM)
trained with yield data derived from NDVI. GAM and CERES
results showed linear correlation to measured yield (R2 = 0.75
and 0.37, respectively) as did the MAXENT model trained
with high-productivity points (R2 = 0.62).

Gonzalez-Sanchez et al. [14] compared the predictive ac-
curacy of several techniques (Multiple linear regression, M5-
Prime regression trees, perceptron multilayer neural networks,
support vector regression and k-nearest-neighbors/KNN) for
crop yield prediction in ten crop datasets from western Mexico.
Predictors came from typical atmospheric data (solar radiation,

rainfall, temperature, etc) and some genetic and farm manage-
ment information like season-duration cultivar and planting
area. For these specific conditions, the regression trees and
KNN showed the lowest error metrics.

Kumar [15] performed rice yield forecasting by adaptive
neuro fuzzy inference system (ANFIS) technique. For that,
they used 27 years time series data of yield and weather.
ANFIS is an effort to integrate the benefits of neural networks
and fuzzy logic in a single framework by using linguistic
information from the fuzzy logic and learning capabilities of
an artificial neural network (ANN). Quantitative performance
assessment for rice and wheat yield observations in India
showed good applicability of the technique in yield prediction.

Dahikar et al. [2] studied the basic requirements for ap-
plications of ANNs in yield prediction. Simple network ar-
chitectures, with one hidden layer and back propagation of
errors were tested for different predictors and crops, like
cotton, sugarcane, wheat, rice and others. Soil parameters
detected to be relevant for crop yield prediction were PH
and concentrations of nitrogen, phosphate, potassium, organic
carbon, calcium, magnesium, sulphur, manganese, copper and
iron. In terms of atmospheric predictors, temperature, rainfall
and humidity were the relevant features detected.

The proposed system differs from existing solutions as (i) it
does not rely on NDVI data, which is a more scalable approach
to handle country-level forecasts, and (ii) it is able to provide
yield forecasts with a seven-month lead time, while offering
similar (or even better) results to systems that perform short
term yield forecasts.

III. ARCHITECTURE

In this work, we combined atmospheric data (accumulated
precipitation, maximum, and minimum temperature) and soil
data to produce a model capable of generating yield forecast
data—as illustrated in Figure 1. We implemented a Deep
Neural Network (DNN) as our machine learning model. This
section provides a description of the multiple data sources
required to feed our DNN model, the model itself, and its
usage in production.
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Fig. 2: DNN Architecture. Red nodes represent Long Short-Rerm Memory (LSTM) recurrent layers. Gray nodes represent dense,
fully-connected layers. The blue node represents a concatenation layer, which concatenates the intermediate representations
from the dynamic and static paths. Numbers below node names represent shapes of input and output tensors. For example,
n×m represents a n by m matrix, while single numbers represent line vectors.

A. Data Sources

Monthly precipitation data was provided by the Climate
Hazards Group Infrared Precipitation with Stations (CHIRPS)
dataset [16]. CHIRPS provides precipitation data at 0.05◦

resolution by merging satellite and weather station infor-
mation. CHIRPS uses satellite data in three ways: satellite
means are used to produce high-resolution rainfall climatolo-
gies, infrared Cold Cloud Duration (CCD) fields are used
to estimate monthly and, pentadal rainfall deviation from
climatologies. Lastly, satellite precipitation fields are used to
guide interpolation through local distance decay functions.

Monthly air temperature data, specifically minimum and
maximum temperatures for each month, were provided by re-
analysis datasets1 from ERA-Interim, one of the latest reanal-
ysis products developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF) [17]. This dataset covers
the globe at a resolution of approximately 80km per pixel and
was generated using data assimilation from several sources.
The project represents a significant improvement over past re-
analysis efforts, due to advances in modeling of several climate
processes such as the hydrological cycle and assimilation of
cloud- and rain-affected satellite radiances.

Soil properties data comes from SoilGrids.org [18], an open,
global soil dataset with a resolution of 250m per pixel which
provides information for clay, silt and sand contents plus
fine earth and coarse fragments bulk density. All this data is
available in seven depths (0, 5, 15, 30, 60, 100 and 200cm).
SoilGrids data are results of predictions based on 150000 soil
profiles used for training and 158 remote sensing-based soil
covariates. These were used to fit an ensemble of random
forest, gradient boosting and multinomial logistic regression
models.

As labels for training, the model uses actual yield data.
In this work, we collected maize and/or soybean yield data
at county or municipality level from each country’s official
agency. For Brazil, we used soybean data provided by IBGE
(Brazil Statistics and Geography Bureau) [19], while for the
USA we used maize and soybean data provided by the USDA
(United States Department of Agriculture) [20]. Crop seasons
in both countries last approximately six months, although the

1Reanalysis datasets are datasets produced both from observational data
and numerical models.

TABLE I: Static features used in the Machine Learning model.
All the soil features here are available in seven layers. Latitude
and longitude of the prediction point are also included in the
static inputs. Hence, there are 9× 7 + 2 = 65 static features.

Feature Unit

Clay content (0–2 micrometer) mass fraction [%]
Silt content (2–50 micrometer) mass fraction [%]
Sand content (50–2000 micrometer) mass fraction [%]
Bulk density (fine earth) [kg/m3]
Coarse fragments volumetric [%]
Cation exchange capacity of soil cmolc/kg
Soil organic carbon content (fine earth fraction) g per kg
Soil pH x 10 in H2O —
Soil pH x 10 in KCl —
Point Latitude °
Point Longitude °

tropical climate in Brazil allows for a second mini-season
in-between main seasons. The dataset sizes used in training,
validation, and testing are described in Table III. For each
case, test sets were composed of 20% of the total data points,
while training plus validation sets were composed of the
remaining points (from which being 30% validation and 70%
for training).

We split the input data into two main categories: static for
the soil data and dynamic for the weather data. The rationale
behind this decision is that for the time scales considered
in this work soil properties do not change over time, while
meteorological data presents seasonal variability. Knowing
the data we used has different characteristics allows us to
approach them differently when building an ML model. The
static features (corresponding to the soil data) we used to train
the model are shown in Table I, and the dynamic features
(corresponding to the atmospheric data) we used to train the
model are shown in Table II.

B. Neural Network Description

As we split the data into dynamic and static sets, the data
follow different pathways in the model before the joining
the internal representations of both data types (Figure 2).
For the static set, the data flows through a two-layer fully-
connected neural network before proceeding in the compu-
tational graph—each layer with a hundred hidden units. The
dynamic set flows through a three-layer LSTM neural network,



TABLE II: Dynamic Features used in the Machine Learning
model. All the features in here are available for eight months
covering the crop cycle in each geography (September to April
in Brazil; April to October in US). Hence, there are 3×8 = 24
dynamic features.

Feature Unit

Minimum Temperature [°C]
Maximum Temperature [°C]
Precipitation [mm]

each with 280 memory cells and eight time steps (one for
each month in the seasonal forecast), before proceeding in the
computational graph. LSTM [21] units are recurrent neural
network modules that are useful when dealing with data with
a temporal relationship, and can learn to recognize temporally
extended patterns in noisy sequences. Hence, they were chosen
to model the dynamic input in our model.

The aforementioned describes the process outlined in the
upper part of Figure 2 before the node labeled “Concatenation
Layer”. When both data paths are computed, the network
joins them together through the concatenation of internal
representations. After the concatenation, the network processes
the joined data through five fully-connected layers, each with
a hundred hidden units. Finally, the network outputs a single
value: the forecasted yield. The model uses the Mean Absolute
Error as cost function and uses scaled exponential linear units
(SELUs) [22]. The SELU activation function is given by

selu(x) = λ

{
x if x > 0,

αex − α if x ≤ 0
. (1)

In Equation (1), α and λ are chosen in a way that the mean and
variance of the inputs are preserved between two consecutive
layers. Hence, such an activation leads to Self-Normalizing
Networks with the property of being robust to perturbations,
and not having high variance in training errors [22].

A full description of the model as implemented in
Keras [23] is shown in Figure 3 and represents everything that
is needed to replicate the model described in this section, and
ensures reproducibility of the results described in this work
(Section IV-B).

C. Production System

As described in the previous section, after the DNN is fully
trained, one can forecast the yield of a single point: given a pair
p = (latitude, longitude), one can query the meteorological
and soil properties datasets, extract the data corresponding to
p and perform a forecast. Although this would work for any
point in the globe, the model was trained with Brazil and US
yield data so it wouldn’t make practical sense to use it outside
these geographies. Moreover, it is possible to integrate the
DNN into a bigger system for on-the-fly yield forecast. We
implemented the DNN as a component in a decision-support
tool for agriculture. To forecast yields for future dates, we
replaced the ERA-Interim data with seasonal forecasts (which
are also based on reanalysis data) for the dynamic features

dynamic_input = Input(shape=(8,3), dtype=’float32’)
inner_lstm1 = LSTM(280, return_sequences=True)(dynamic_input)
inner_lstm2 = LSTM(280, return_sequences=True)(inner_lstm1)
lstm_out = LSTM(280)(inner_lstm2)

static_input = Input(shape=(len(stat_cols),))
inner_stat1 = Dense(100, activation=’selu’)(static_input)
inner_stat2 = Dense(100, activation=’selu’)(inner_stat1)

x = concatenate([lstm_out, inner_stat2])
for _ in range(5):

x = Dense(100, activation=’selu’)(x)

dynamic_output = Dense(1, activation=’selu’)(x)

model = Model(inputs=[dynamic_input, static_input],
outputs=[dynamic_output])

model.compile(loss=’mae’,
optimizer=Adam(lr=0.0005))

Fig. 3: DNN used in this work as a model implemented in
Keras.

and continued using SoilGrids data. Due to its relatively high
resolution, the SoilGrids data allows the system to also forecast
with a resolution of 250m per pixel.

IV. EVALUATION

The goal of the evaluation is to demonstrate the effective-
ness of the proposed yield forecast model against existing
solutions that rely on remote sensing data, e.g. NDVI. We used
five comparison metrics in the evaluation related to accuracy
of the yield forecast.

A. Experimental Setup

Data for the 3 cases (US-Soybean, US-Maize and Brazil-
Soybean) was used in training and testing the DNN model.
For each case, 80% of the total data points were selected as
training set and the remaining 20% as test set. During training,
30% of the training set was selected for a validation set. All
of these sets were randomly chosen, so the model could learn
from many different scenarios of weather, soil and forms of
growing. The sizes of each set are detailed in Table III.

Model training for each case took around 300 epochs until
a minimum validation loss value was achieved. The evolution
of training and validation losses is shown in Figure 4. Losses
show a typical neural network behaviour of continuous decay
for training loss, eventually decoupling from validation loss.
The training made use of the EarlyStopping callback
function from the keras library, with a patience parameter
(the number of epochs with no improvement after which
training is stopped) equal to 50. The DNN model could be
successfully trained using a relatively modest GPU (Tesla
K40m) in reasonable time (~10 minutes). Test sets for each
geography and crop example were used for evaluation of the
model performance in forecasting crop yield at pre-season time
and are discussed in Section IV-B.

B. Result Analysis

The model was used to perform yield forecast for the points
in the test set and the results shown in Table IV. Since
the training and test sets were randomly selected from the



0 50 100 150 200 250
Epochs

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11
E

rr
or

Training Validation

(a) US soybean model

0 100 200 300 400
Epochs

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
rr

or

Training Validation

(b) US maize model

0 50 100 150 200 250
Epochs

0.04

0.06

0.08

0.10

0.12

0.14

E
rr

or

Training Validation

(c) Brazil soybean model

Fig. 4: Loss for training and validation sets across epochs for Brazil/USA soybean/maize models. Dashed lines indicate the
chosen model, which is the one with minimum validation loss.

TABLE III: Datasets sizes used in training, testing and vali-
dation.

Brazil-Soybean US-Soybean US-Maize

# of counties 1529 1814 2204
# of data points 16767 16939 19692
Training set size 9389 9485 11027
Validation set size 4023 4065 4725
Test set size 3354 3388 3819

complete input dataset, a good performance in the test set
indicates the model generalizes well for different seasonal
climates, agriculture management practices, soil and other
geographical characteristics. Figure 5 shows comparison of
observed and forecasted yield for each geography and crop.

When comparing geographies, model results for the US are
slightly better than the ones found for Brazil. It is important
to notice the specific methodologies in gathering yield data
for both countries. The former relies more on self-reporting
information provided by farmers [19], whereas in the latter
case there is a data gathering effort by the governmental

agency [20]. These different methods are reflected on both
raw datasets: the one for Brazil showed a higher number of
missing information and in a relevant number of counties the
reported yield remains unchanged along some years, which
suggest the data is a gross estimation.

Model performance of the US-Soybean forecasts was su-
perior to US-Maize. This initially indicates that the DNN
architecture is better in creating a function that maps the
physical relation between soil plus climate to yield in the
soybean case. Physiological differences between soybean and
maize determine the performance in each case. To account for
the temperature influence on both crops, we can analyze the
typical values of accumulated growing degree days (AGDD).
Soybean typically has lower AGDD values (around 1100
°C) [24] than Maize (around 1450 °C) [25]. In terms of water
needs, studies have showed maize has a higher vulnerability
to moisture deficiency when compared to soybean [26]. All
of these indicate that maize is more sensitive to the climate
variables (temperature and precipitation) used in model train-
ing than soybean, meaning any uncertainties brought by the
climate data input sources will have a stronger impact in the
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Fig. 5: Scatter plots of model performance according to country and crop.

maize yield forecast, which could explain the difference in
performance of the model for the two crops.

The comparison of these results to other yield forecasting ef-
forts should take in consideration several differences amongst
these studies, including the selected statistics reported and its
appropriate units. Metrics like the coefficient of determination
R2 and the ones that compute errors as a ratio of some average
field (MAPE, RMSPE) can be compared across different crops
and regions, besides being commonly reported. Table V shows
some of these metrics reported in several studies. All of
these efforts make use of some sort of remote-sensing, most
frequently NDVI. The performance of this work is comparable
with these studies but with a lot less data requirements and is
able to provide useful information for agriculture operations
before the seeding occurs.

V. CONCLUSION

Agriculture yield forecasts are a very useful tool for farm
management and can help stakeholders to perform critical
decisions in their agricultural operations. Many available meth-
ods provide yield forecast information, the vast majority of
them through the use of some sort of remote sensing data

TABLE IV: Model scores.

Brazil - Soybean US - Soybean US - Maize

MAEa 288.39 270.18 1031.00
MAPEb 10.70% 9.80% 11.31%
RMSEc 385.81 354.08 1393.02
RMSPEd 14.31% 12.85% 15.28%
R2e 0.55 0.75 0.71

a Mean Absolute Error
b Mean Absolute Percentage Error

c Root Mean Square Error
d Root Mean Square Percentage Error

e Coefficient of determination

(like NDVI) from the farm fields. While this allows for high-
resolution forecasts, it comes with the high cost of acquiring
and processing these extra datasets, which can be relevant
depending on the properties dimensions.

Machine-learning is one of the techniques gaining popular-
ity for agriculture applications, specially with the increasing
number of new data sources being developed in the latest
years. We propose a machine learning system that provides
pre-season yield forecasting, meaning farmers can make farm



TABLE V: Comparison of yield forecasting methods to the ML system proposed in this work.

Study Crop R2
α MAPEβ [%] RMSPEγ [%] ML System

Kolotii, A et al., 2015 [27] Wheat 0.50 - 0.80 - - 0.55 - 0.75α
Capa-Morocho, M et al., 2016 [28] Wheat, Maize - - 2.1 - 13.2 NA - 15.28γ

Meroni, M et al., 2016 [29] Grain crops 0.62 - 0.91 - - 0.55 - 0.75α
Morell, F et al., 2016 [30] Maize - - 20 - 34 2.85 - 15.28γ

Johnson, D 2014 [31] Maize, Soybean 0.47 - 0.77 - - 0.55 - 0.75α
Pagani, V et al., 2018 [32] Rice 0.21 - 0.89 - - 0.55 - 0.75α
Kumar, N et al., 2014 [33] Rice, Wheat 0.53 - 0.58 - - 0.55 - 0.75α

Bose, P et al., 2016 [34] Wheat - 0.13 - 27.97 - 9.8 - 11.31β
Satir, O and Berberoglu, S, 2016 [35] Maize, Wheat, Cotton 0.50 - 0.67 6.30 - 7.30 - 0.55 - 0.75α & 9.8 - 11.31β

α, β, γ subscripts indicate which metric is being shown for the ML System

management decisions (like choosing different crops or genetic
variations) before seeding occurs.

The system proposed in this work is formed by a neural
network where inputs are treated separately. Static soil data
in handled by fully-connected layers while dynamic mete-
orological data is handled by recurrent LSTM layers. This
particular architecture was trained with historical data for
several soil properties, precipitation, minimum and maximum
temperature against historical yield labels at county level for
two crops (maize and soybean) and two geographies (Brazil
and US), which production correspond to 44% of the global
grain production [6]. After training, the model was tested in a
separate dataset and showed comparable results with existing
yield forecasting methods that make use of extensive remote-
sensing data. The major lesson learnt from our experiments
is that it is possible obtain scalable yield forecast because
the proposed neural network model can detect and exploit
redundant information both in the soil and in the weather
data. Additionally, the model may have been able to learn
an implicit representation of the cycles of the crops evaluated
in this paper, considering the seasonal atmospheric data used
as input.

Our results show that farmers and agriculture stakeholders
can benefit from useful information with significantly fewer
data requirements and maintain useful accuracy values. The
global availability of the input datasets also allows the system
to easily scale across different regions if local yield data is
present. Although the used input datasets allow for relatively
high-resolution forecasts (250m), the existing system can be
used as a foundation for future precision agriculture services
by assimilating more traditional NDVI and similar datasets.
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