Message Passing over Windows-based Desktop Grids

Carlos Queiroz, Marco A. S. Netto, Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Australia
{carlosq, netto, raj}@csse.unimelb.edu.au

ABSTRACT

Message Passing is a popular mechanism used to enable
inter-process communication in parallel and distributed com-
puting. Many complex scientific and engineering applica-
tions that are executed on clusters have been developed
based on this communication model. Due to the huge amount
of computing power being wasted in desktops, there is an
increasing interest in using these computers to execute com-
plex applications. However, most of the current middleware
systems are aimed at executing only embarrassingly paral-
lel applications, i.e. with no inter-process communication.
Moreover, most existing middleware systems are based on
Linux. Nevertheless, it is well-known that the desktop ma-
chines in the world are predominantly based on the Windows
operating system. Hence, in this work we present the design,
implementation and evaluation performance of a Windows-
based implementation of two message passing models, Mes-
sage Passing Interface (MPI) and Bulk Synchronous Parallel
(BSP), over the Alchemi Grid computing framework.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks|: Distribu-

ted Systems— Distributed applications; D.1.3 [Programming

Techniques|: Concurrent Programming— Parallel Program-
ming

Keywords

Message Passing Interface, Bulk Synchronous Parallel Model,
Parallel Computing, Desktop Grids

1. INTRODUCTION

Idle desktop machines offer considerable computing power
that can be harnessed to execute complex applications. Pop-
ular projects such as SETI@home, BOINC@home, Fight-
AIDS@home, Distributed.net, and Folding@home have come
up with new ways of make use of these idle resources. How-
ever, these systems primarily target parameter sweep appli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MGC’06, November 27, 2006 Melbourne, Australia Copyright 2006 ACM
1-59593-581-9...$5.00.

cations, and have no support for inter-process communica-
tion.

Message Passing is a mechanism to enable inter-process
communication in parallel and distributed computing. Many
complex scientific and engineering applications that have
been developed to execute on cluster machines are based
upon such a communication model. These applications im-
pose several challenges due to inter-process communication.
For example, a machine failure may compromise the entire
application and differences between performance of various
machines have to be carefully handled to minimise the in-
fluence on the final result. Problems such as scalability,
security, scheduling, are also need to be considered for mes-
sage passing applications. In order to tackle the challenges
of using desktop machines for distributed computing, mid-
dleware systems must provide simple and efficient mecha-
nisms for development of applications, and also have to sim-
plify the provisioning of the computational resources. Cur-
rently, desktop Grid technologies, such as Bayanihan [5],
InterGrade [3], BSP-G [6], and PUBWCL [1], either do not
support the Windows environment or do not provide mes-
sage passing programming libraries. Another problem is
that message passing libraries, such as MPICH-V [2], do
not make use of various advanced Grid middleware services.

This work overcomes this limitation by implementing sup-
port for two well-known message passing models — the Mes-
sage Passing Interface (MPI) and the Bulk Synchronous Par-
allel (BSP) model, over Alchemi which is a Grid computing
framework for the Windows platform [4].

2. MESSAGE PASSING OVER ALCHEMI

Relying on Grid middleware brings several benefits. Some
of these include: security, resource discovery, user and data
management and scheduling. In order to leverage such func-
tionalities, we chose to develop our libraries on top of Al-
chemi [4], a Windows-based desktop Grid computing frame-
work implemented on Microsoft .NET platform. Alchemi
is designed to be user friendly without sacrificing power
and flexibility. It provides the run-time machinery and a
programming environment (API), which is required to con-
struct desktop Grid applications. It also supports cross-
platform application submission via a web-service interface.
Alchemi is based on the master-worker model, where a man-
ager is responsible for coordinating the execution of tasks
sent to the executors (desktop machines).

The key features supported by Alchemi are Internet-based
clustering of desktop computers without a shared file sys-
tem, federation of clusters to create hierarchical coopera-

tive grids, dedicated or non-dedicated (voluntary) execution
by clusters and individual nodes, grid thread programming
model (fine-grained abstraction), and a Web Services inter-
face to support a grid job model (coarse-grained abstraction)
for cross-platform interoperability.

Most of the BSP and MPI implementations have bindings
that can be used in C, C++ and FORTRAN languages.
Developers working with these implementations must use
low level data types and provide several parameters, such
as array of bytes, array size, and array data type for some
functions. As our implementation is developed on top of
the .NET framework, all these parameters can be reduced
to a single object. Another advantage of our approach is
that the application developers can use high level languages
supported by the .NET, such as C#, C++, J++, Visual
Basic, and Python.

3. MESSAGE PASSING IMPLEMENTATION

In this initial implementation we provide the basic func-
tions for the MPI library and all functions for the BSP
model. Some of these functions are very similar in both MPI
and BSP. Among the functions we have those to initialise
and finalise the environment, to receive and send messages,
to get information on the number of processes and their
identification, and also to execute barrier and broadcast.

Note that even though these functions are very similar,
they have some peculiarities for each model. For instance,
the MPI_Send function allows defining the type of the mes-
sage but the bsp_send does not. Taking this into account
we have designed a single core architecture that is used by
both environments. The send and receive (move) functions,
as well as, rank (pid), init (begin), finalise (end), and so forth
are implemented in a core library and a wrapper is used to
keep up with differences in the function signatures for each
specification that was implemented.

The steps to execute message-passing applications on Al-
chemi are basically the same to execute the parameter sweep
applications — which are currently supported by Alchemi.
However, the users now make use of the runners (MPIRun
and BSPRun) responsible for loading the message passing
libraries. Figure 1 summarises the process to execute the
parallel applications in an Alchemi grid. There are basi-
cally, four steps:

1. The user submits an application to the Alchemi Man-
ager (in our case an MPI or a BSP application using
MPIRun or BSPRun respectively) by specifying the
number of machines and the application.

2. The Alchemi Manager selects the nodes to run the
application.

3. The Executors (Alchemi nodes) start to run the appli-
cation (in our case the nodes communicate with each
other).

4. The results are sent back to the user, through the Man-
ager, that saves them in files, one for each process.

4. PERFORMANCE EVALUATION

In order to evaluate our MPI and BSP implementation
on Alchemi, we setup an environment, composed of 9 desk-
top machines, and compared our libraries with MPICH over
Cygwin. The matrix multiplication application was chosen

Manager distributes the
application processes to the
executors (nodes)

a.

Send back the
results to user I~
-
Executors

Lo] & ! @
s
8 8 Q

Figure 1: Flow diagram for executing message pass-
ing applications on Alchemi middleware in a Desk-
top Grid.

55

MPICH ——

MPI over Alchemi —e—

5 BSP over Alchemi —a—
4 ——

35 i %

3

Speedup

25

2

15

1

2 3 4 5 6 7 8
Number of slave processes

Figure 2: Speedup for Matrix with 2000x2000 ele-
ments.

for this evaluation. The results in Figure 2 show that our
implementation performs similar to MPICH. Therefore we
argue that the BSP and MPI implementations over Alchemi
are a very attractive alternative to develop message pass-
ing applications over desktop machines due to the several
facilities provided by our environment.

S. REFERENCES

[1] O. Bonorden et al. A web computing environment for
parallel algorithms in java. Scalable Computing:
Practice and Ezperience, 7(2):1-14, 2006.

[2] G. Bosilca et al. MPICH-V: toward a scalable fault

tolerant MPI for volatile nodes. In Proceedings of the

ACM/IEEE SC, pages 1-18, Baltimore, USA, 2002.

A. Goldchleger et al. InteGrade: Object-Oriented Grid

Middleware Leveraging Idle Computing Power of

Desktop Machines. Concurrency and Computation:

Practice and Ezxperience, 16:449-459, March 2004.

[4] A. Luther et al. Peer-to-Peer Grid Computing and a
.NET-based Alchemi Framework, High Performance
Computing: Paradigm and Infrastructure. Wiley Press,
New York, USA, 2005.

[5] L. F. G. Sarmenta and S. Hirano. Bayanihan: building
and studying web-based volunteer computing systems
using java. Future Generation Computer Systems,
15(5-6):675-686, 1999.

[6] W. Tong et al. A parallel programming environment on
grid. In Proceedings of the ICCS, volume 2657, pages
225-234. Springer, 2003.

3

