
Evaluating Load Generation in Virtualized Environments for

Software Performance Testing

Marco A. S. Netto1, Suzane Menon1, Hugo V. Vieira1, Leandro T. Costa1,

Flavio M. de Oliveira1, Rodrigo Saad2, Avelino Zorzo1

1Pontifical Catholic University of Rio Grande do Sul (PUCRS) – Faculty of Informatics
2Dell Inc.

Porto Alegre, Brazil

Abstract—Before placing a software system into production,
it is necessary to guarantee it provides users with a certain
level of Quality-of-Service. Intensive performance testing is
then necessary to achieve such a level and the tests require an
isolated computing environment. Virtualization can therefore
play an important role for saving energy costs by reducing
the number of servers required to run performance tests and
for allowing performance isolation when executing multiple
tests in the same computing infrastructure. Load generation
is an important component in performance testing as it simu-
lates users interacting with the target application. This paper
presents our experience in using a virtualized environment for
load generation aimed at performance testing. We measured
several performance metrics and varied system load, number
of virtual machines per physical resource, and the CPU pinning
schema for comparison of virtual and physical machines. The
two main findings from our experiments are that physical
machines produced steadier and faster response times under
heavy load and that the pinning schema is an important aspect
when setting up a virtualized environment for load generation.

Keywords-Software Performance Testing; Virtualization;
Load Generation; LoadRunner; Multi-core Architecture.

I. INTRODUCTION

Software performance testing has become an important

research area aimed at investigating how software systems

behave under different loads and computing facilities. Not

only companies may be affected by using software systems

that provide users with low Quality-of-Service, but also

mission critical systems may cause catastrophic results when

not performing well.

Software systems are tested using various input parame-

ters and analysed by several metrics. In addition, complex

applications may have individual components that are tested

separately. Therefore, computing power and performance

isolation [1], [2] for each test become essential. The first

requirement can be met with an off-the-shelf cluster, whereas

the second one with virtualization. Besides performance

isolation, virtualization can save energy costs by reducing

the number of physical machines used for performance tests.

As several tests are required before deploying a software

into production, most of the research on testing for virtual-

ized environments have focused on automating test deploy-

ment [3]–[6]. Although the deployment phase is relevant, it

is important to understand the impact of virtualization [7]

when performing these tests. One of the main components

that may suffer from virtualization is the load generator. This

component is responsible for simulating users contacting the

target application that needs to be tested.

Little work has been done to understand load generation

on virtualized environments [4]. This paper presents our

experience in using a virtualized environment for load gen-

eration aimed at performance testing. We measured several

metrics, including throughput, response time, and transac-

tions per second for comparison of virtual and physical

machines. We also varied the system load, number of virtual

machines per physical resource, and the pinning schema

for distributing CPUs to the virtual machines (VMs). The

two main findings from our experiments are that physical

machines produced steadier and faster response times under

heavy load and that the CPU pinning schema is an important

aspect when setting up a virtualized environment.

The remainder of the paper is organized as follows. Sec-

tion II introduces relevant concepts of software performance

testing; Section III describes the main bottlenecks when

using virtualization for load generation; Section IV presents

the evaluation of load generation under various scenarios;

Section V discusses related work in virtualization and soft-

ware performance testing; and Section VI concludes the

paper with the main findings and future research directions.

II. SOFTWARE PERFORMANCE TESTING

With the growing demand to serve a greater number of

customers, there has been an increasing number of web

services and applications to allow multiple users to access

simultaneously the system resources. In order to analyze the

capacity of these systems and maintain their availability and

performance as expected, it is necessary to simulate user

activities under several conditions. In this context, through

software performance testing, it is possible to develop

effective strategies to maintain system performance at an

acceptable level [8].

These tests aim at verifying whether the system perfor-

mance is in line with design expectations, subjecting it to

a certain load at a given computing environment [9], [10].



Figure 1. Software stack for performance testing and its interactions with the user and target application.

In order to execute these tests, several workload types and

computing environments can be configured to evaluate the

system under various conditions, being therefore able to

identify possible bottlenecks that prevent the system to meet

users’ expected Quality-of-Service defined in Service Level

Agreements. Moreover, besides identifying bottlenecks, per-

formance testing helps to determine the required time for

software to perform a task and to provide an idea about

how stable the system is through a load change [11].

A. Performance Testing Architecture

Software engineers usually adopt automated testing to

evaluate system performance due to the large number of

users accessing a target application simultaneously. Thus, a

machine set that represents simulated users who access the

target application is defined. Actions performed by these

users are called workloads, which trigger requests (e.g.

HTML/HTTP) to the server where the application is hosted.

The software performance testing comprises several steps

and modules. Figure 1 summarizes the software stack for

performance testing [8] and its interaction with the test

engineer and the target application. The test engineer starts

configuring the test and triggering the load generator (Step

1). The latter applies the load to the system under test (Step

2). While the system is executing, the Probes monitor the

resources using tools such as SiteScope1 and perfmon2 ,

meanwhile the data is then separated for further analysis

(Step 3). Once the data is available and the execution

completed, the tools collect and process the data from the

probes (Step 4), which is then used by the engineer for

analysing the system performance (Step 5).

After the test, the test engineer can then track how

resource and system characteristics vary depending on work-

load. Among these characteristics, the most relevant are the

1SiteScope: http://sitescope.tellurian.net/SiteScope/docs/UserGuide.htm
2Performance monitoring tool for Windows: http://msdn.microsoft.com.

following [12], [13]:

• Availability: time that an application is available for

user;

• Response time: time that an application takes to re-

spond to a request;

• Throughput: amount of processed data in a given period

of time;

• Use: system resources used by the application (e.g.

disk, network, memory, and CPU utilization).

B. LoadRunner

LoadRunner [14] is a tool used in performance testing

to simulate several users accessing the target application.

These users are configured to reproduce real workloads that

are used in the production environment. In order to execute

a performance test using LoadRunner, it is necessary to

perform the following steps (see Figure 2 [14]):

Planning

the test

Creating the

vuser script
Creating the

scenario

Running the

scenario

Analysis the

test result

Figure 2. Test steps using LoadRunner.

• Test plan: defines the requirements for performance

testing, for example, expected response time for a given

number of simultaneous users;

• VUser script creation: records the user activities on the

application and generates scripts automatically;

• Scenario definition: configures the test environment

using the LoadRunner Controller. It is possible to define

input parameters, such as the number of users, testing

time, ramp-up and ramp-down times;

• Scenario execution: manages and monitors the load test

using the LoadRunner Controller;

• Result analysis: shows the test results using the Load-

Runner Analyzer tool.



In order to perform these steps, LoadRunner has three

tools: Virtual User Generator (VUGen), which is respon-

sible for capturing user information, accessing the target

application, and then generating a performance test script,

also known as the virtual user script; Controller, which

is responsible for managing, configuring, and monitoring

load testing, which is executed from the script generated

by the VUGen tool; and Analyser, which creates reports

based on test results—these reports contain graphics and

values corresponding to metrics monitored and managed by

Controller.

III. LOAD GENERATION ON VIRTUALIZED

ENVIRONMENTS

As mentioned before, the load generator assigns load to

the target application. Here we describe in details how the

load generator works and issues on how this module is

placed in a VM.

The users’ behaviour used by the load generator is defined

through the test script. In order to generate this script,

a tool is used to record all transactions executed by the

simulated user on the target application. This script is used

to reproduce the user actions and is composed of three parts:

vuser init executes when the virtual user is initialized;

Action contains sequences of activities that are executed

along with the test; and vuser end contains the actions that

are executed when the virtual user finalizes its execution.

Algorithm 1 presents an example of a script pseudo-code

that simulates a user accessing a shopping website. The user

initially contacts the server (Line 5), selects items (Line 7),

and pays for them (Line 10). A typical load generator allows

the inclusion of a simulated user think time (Lines 6 and 8),

which can be a static number or a function that generates

random numbers according to a given distribution.

Algorithm 1: Pseudo-code for the test script.

begin1

/* vuser_init */

constructor procedures2

end3

begin4

/* Actions list */

connect to application server(server)5

think time(t1)6

select item(item1)7

think time(t2)8

...9

pay items(items[])10

...11

end12

begin13

/* vuser_end */

destructor procedures14

end15

After the script is generated, the test engineer configures

the test scenario using several parameters such as number of

threads that simulate users accessing the application, startup

time, total test execution time, features and metrics that

need to be monitored. Thereafter, the test can be performed.

Once all the monitored data is collected, test results can

be analyzed, using graphics to determine relationships and

application behavior during the test.

Load generators can be placed into VMs in order to

achieve performance isolation when multiple experiments

have to be executed at the same time in the same infras-

tructure. By using virtualization, each experiment can have

a portion of the computing resources, which can be accessed

in an isolated fashion; such a mechanism can be hardly

achieved using the physical resources directly. From the

deployment’s perspective, there is no difference between

triggering load generators in virtual and physical machines;

only the IP address has to be configured. However, from the

performance’s perspective, one of the main drawbacks is the

overhead imposed by the virtualization layer.

The virtualization overhead comes mainly from I/O opera-

tions, because these operations of the VM operating systems

are interpreted and translated by the hypervisor that passes

them to Dom-0, which is responsible for accessing and

processing all requests for VMs’ hardware. Thus, the overall

system performance is affected. Dom-0 is a privileged

domain, which is a VM with direct access to the actual

hardware.

One way to minimize the effect of overload due to the

operations of I/O is to increase the CPU power of the

Dom-0, because with a greater amount of resources the

Dom-0 is capable of managing the requests of the VMs

in a more optimized way. For example, in a quad-core

machine, one can have a single core dedicated to Dom-

0, instead of sharing with all cores of the VMs. This

can be achieved by pinning the CPU, which specifies the

virtual CPUs (VCPUs) are mapped to physical CPUs. The

evaluation section contains experiments that show the impact

of multiple CPUs pinning schemes.

IV. EVALUATION

This section presents the environment setup used in our

experiments. It also describes the metrics, experiment pa-

rameters, and result analysis. The aim of the experiments is

to show the performance difference between using physical

and virtual machines, and the impact of CPU pinning schema

when setting up the virtualized environment.

A. Environment Setup

The infrastructure used to perform the experiments con-

sists of four machines Dell PowerEdge R610: 2 Intel Xeon

E5520 Quadcore Processors and 16GB RAM. One machine

executes the application to be tested, two machines are used

as load generators (one physical and the other with a set



Load

Generator

Load

Generator's

ControllerApplication

Server

Tomcat
...

Load

Generators

VM
1

VM
n

Virtual MachinePhysical Machine

Execution with physical machine Execution with virtual machines

Figure 3. Experiment setup.

Table I
LIST OF SOFTWARE PACKAGES AND THEIR RESPECTIVE VERSIONS.

Software Version

LoadRunner 9.5
Oracle VM Server 2.2
Xen 3.4
Windows Server 2008 (32-bits)
Tomcat 5.5.29

of virtual machines), and one that contains the controller

for trigging and managing the tests. Figure 3 illustrates

the information flow among the machines involved in the

experiment.

All machines run Windows Server, except Dom-0 (i.e.

Xen [15]), which runs Linux as it is based on Oracle VM

Server. As we wanted to evaluate the use of virtualization

for load generation, we chose a lightweight application (i.e.

the Tomcat application server) to be able to easily increase

resource consumption for the generators. The load generator

script accesses Tomcat web pages and compacts a 5MB file.

Therefore, we have an experimental setup that uses disk,

CPU, and network. Table I summarizes the list of software

packages and their respective versions.

We varied three input parameters:

• Number of users: these are the virtual/simulated users

that influence the load assigned to the application: 25,

50, 100, and 150;

• Number of VMs: the number of virtual machines on

the physical host: 1, 2, and 4;

• CPU pinning schema: the number of CPUs dedicated

to Dom-0.

We measured almost 30 metrics, which include through-

put, response time, pages downloaded per second, and

several system metrics, such as memory, CPU, and network

consumption. We show the results for some of these metrics,

whereas the other ones are used to enhance our analysis. In

addition, each experiment was executed for two hours. The

graphs presented in the following section include the average

result of a given metric with its respective standard deviation

represented by vertical bars.

B. Results and Analysis

1) Physical versus virtual machine: The first set of ex-

periments compares performance results from one physical

machine against one VM. For these experiments, all CPUs

are shared between the VM and the Dom-0. Figure 4

presents response time and throughput for both physical and

virtual machine. For response time, we observe that both

average and standard deviation increase with the number of

users in the system, whereas for the physical machine these

values are steady for different system loads. This happens

because of the I/O overhead imposed by the virtualization

layer.

In order to verify the actual bottleneck from I/O operations

in virtualization, we measured system resource metrics and

present them in Tables II, III, and IV, which represent CPU

usage, disk queue length, and network usage, respectively.

CPU usage increases for both virtual and physical machines

with the increase of load applied to the system. However,

it is interesting to remark that the physical machine has a

higher CPU usage. This happens because data is available

sooner for the physical machine than for the virtual one.

The main bottleneck observed is the disk access. Table III

shows that even though the load increases with the number

of users, the disk queue length remains steady after a certain

threshold, i.e. 40 and 25 for virtual and physical machine,

respectively. This difference between these two values has

a considerable impact on the overall system performance,

as observed in the response time metric (Figure 4) and

the network usage (Table IV), as more data is ready to be

transferred using the physical machine.

Figure 4. Physical versus virtual machine.

2) Impact of CPU pinning: As observed in the previous

section, I/O operations generate overhead in the VMs. Here

we present results for three CPU pinning schemas: (i) all

CPUs are shared between the virtual and Dom-0 (non-

dedicated CPUs); (ii) 2 CPUs are dedicated to Dom-0 (2

dedicated CPUs); and (iii) 4 CPUs are dedicated to Dom-0

(4 dedicated CPUs). For the last two cases, the remaining



Table II
PERCENTAGE OF THE AVERAGE CPU USAGE.

Users 25 50 100 150

Values for VM 7.3 14.8 25.3 34.3
Values for phys. mach. 6.7 13.4 29.3 48.1

Table III
AVERAGE DISK QUEUE LENGTH (# OF REQUESTS).

Users 25 50 100 150

Values for VM 40.4 41.4 39.6 38.6
Values for phys. mach. 6.3 24.9 24.1 24.5

Table IV
AVERAGE BYTES RECEIVED PER SECOND (103).

Users 25 50 100 150

Values for VM 78.3 147.4 238.2 282.7
Values for phys. mach. 107.2 203.6 398.6 529.4

CPUs are shared between the VM and Dom-0. Here we

present the results for 50 and 150 users.

Figures 5 and 6 depict the results of response time and

throughput respectively. We observe that different CPU pin-

ning schema have different impact depending on system load

and metric. For instance, dedicating 2 CPUs to Dom-0 for 50

users has a reduction of approximately 5% compared to non-

dedicated CPU schema, whereas for 150 users, sharing all

CPUs with the VMs has a reduction of approximately 8%

compared to dedicating CPUs to Dom-0. For throughput,

the most significant difference is for 150 users, in which no

dedicated CPUs to Dom-0 increases in 10% the throughput

compared to 2 dedicated CPUs. For the case of 150 users,

more CPU is required compared to 50 users (Table II), there-

fore providing as much CPU as possible to the VM produces

a higher throughput. However, for 50 users, increasing CPU

power in Dom-0 makes writing disk speed increase in 10%,

which results in higher throughput.

Increasing the CPU power of Dom-0 enhances the perfor-

mance of I/O operations, but decreases the CPU performance

inside the VM. We confirmed the improvement by measuring

two disk-related metrics: average disk data writing time and

average disk queue length, showed in Tables V and VI,

respectively. The main reduction comes from changing from

non-dedicated to 2 dedicated cores to Dom-0. As the 50-

user scenario is not as CPU demanding as as the 150-user

one, the latter requires more CPU for the VMs. Therefore,

not including the dedicated cores to Dom-0 produces faster

response time for 150 users (Figure 5).

3) Multiple VMs per physical machine: This section

shows results of increasing the number of VMs in the phys-

ical machine considering the average system load scenario,

i.e. 50 users. In order to keep the same load for each

(a) 50 users.

(b) 150 users.

Figure 5. Impact of CPU pinning on response time.

Table V
AVERAGE DISK DATA WRITING TIME (SECONDS).

CPU Pinning non-ded. cores 2 ded. cores 4 ded. cores

50 users 0.80 0.71 0.71
150 users 0.93 0.71 0.70

Table VI
AVERAGE DISK QUEUE LENGTH (# OF REQUESTS).

CPU Pinning non-ded. cores 2 ded. cores 4 ded. cores

50 users 41.4 41.4 40.5
150 users 47.6 39.3 39.1

experiment, we split the number of users among the VMs.

The metrics evaluated in these experiments are response time

and throughput.

Apart from the physical machine producing faster re-

sponse times and higher throughput compared to VMs, these

perform worst and are more unstable when the number of

VMs increases. This behaviour can be easily seen in Figures

7 and 9, which show results for response time and trans-



(a) 50 users.

(b) 150 users.

Figure 6. Impact of CPU pinning on throughput.

Figure 7. Impact of multiple VMs on response time - 50 users.

action response time percentile, respectively. This happens

because Dom-0 requires more CPU to handle multiple VMs.

For instance, for one VM, the CPU usage to handle 50 users

is 14.75%, whereas for four VMs the usage is 7.2%. This

reduction is due to Dom-0 competing for CPU with the VMs.

Figure 8. Impact of multiple VMs on throughput - 50 users.

Figure 9. Impact of multiple VMs on transaction response time percentile
- 50 users.

Table VII
AVERAGE PROCESSOR TIME AND DISK QUEUE LENGTH FOR MULTIPLE

VMS.

Number of VMs 1 VM 2 VMs 4 VMs

Avg. processor usage (%) 14.8 11.7 7.2
Disk queue length 41.4 38.5 39.8

4) Reduzing I/O operations: The results presented so far

are based on simulated users who perform file compression,

which is an I/O intensive operation. By using such a script

we observed the limitations of VMs in comparison to

physical machines for load generation. We also performed

a set of experiments with another script, which does not

contain the compression phase, but only web page requests

to the application server. Figure 10 summarizes the response

time for the virtual and physical machine varying the number

of simulated users who access the server. For comparison

reasons, the results with file compression in this figure

represent only the time to execute the web requests, i.e. the



Figure 10. Response time comparison with reduced number of I/O

operations.

file compressing time is not included. We observe that when

removing the I/O intensive phase of the script, the results of

the virtual and physical machines are similar, which shows

that for a non I/O intensive load generation script, VMs are

a good alternative for replacing physical machines.

V. RELATED WORK

This paper fits into the following main research topics: (i)

performance comparison of virtual and physical machines;

and (ii) use of virtualized environments for software perfor-

mance testing. This section presents some of these studies

and their main differences compared to our work.

Our experiments show the importance of CPU pinning

for performance metrics. Somani and Chaudhary [16] go

further and study the need of dynamically balancing the

load in a physical server. Moreover, they propose an im-

plementation of Global Load Balancing algorithm and use

the CPU pinning mechanism provided by Xen. Cherkasova

and Gardner [17] investigate CPU overhead produced by

I/O operations using Xen VM Monitor. When applied 100%

CPU, they observed a 26.5% CPU usage for Dom-0, which

is a similar result we got in our experiments. There are

also other works that try to minimize the I/O overhead

imposed by virtualization, for instance, Appavoo et al.

[18] presented a mechanism to improve performance of

network access in virtualized machines, and Wei et al. [19]

investigated the use of dedicated Xen domains to handle I/O

operations. Liu and Abali [20] proposed the Virtualization

Polling Engine (VPE) that uses dedicated CPU cores to help

with the virtualization of I/O devices by using an event-

driven execution model with dedicated polling threads. Our

paper shows that a proper CPU pinning has an impact on

performance metrics, which relates to the limitation of the

virtualization technology to handle I/O operations.

Several projects have started to explore virtualization

for software testing. Banzai et al. [3] developed D-Cloud

for software performance testing using cloud computing

technology and VMs in order to reduce cost and time.

Their focus is mainly on fault tolerance testing. Gaisbauer

et al. [4] designed and implemented the Virtualization-aware

Automated Testing Service (VATS). The aim of the VATS

framework is to automate test execution in Cloud computing

environments. Duro et al. [5] introduced the VIRTU tool

aimed at managing, configuring, and testing applications in

virtualized environments. Kim et al. [6] also proposed a

middleware for performance testing for those environments.

Different from the existing works in software performance

testing presented in this section, our aim is to focus not on

the deploying phase of tests, but on the cost-benefits of using

VMs for software performance testing. We described de-

tailed experiments varying several parameters and analysing

various metrics.

VI. CONCLUDING REMARKS AND FUTURE WORK

Performance testing for software systems is essential

to increase companies’ profit and reduce risks in mission

critical systems. Several tests are required before placing

a system into production, and hence the testing process

becomes time consuming and costly. Virtualization has be-

come an important tool therefore to assist in the software

testing because it enables savings in energy costs through

server consolidation and performance isolation for multi-

test scenarios. This paper has then presented our experience

using load generation in a virtualized environment. Load

generation is an important component of software testing

since it emulates users’ behaviour when accessing the target

application. Although virtualization brings benefits, it comes

with an overhead cost, mainly for I/O operations. We have

thus analysed the overhead in several scenarios: changing

system load, CPU pinning schema, and number of VMs per

physical machine.

The main source of bottlenecks comes from the file

compressing part (i.e. the I/O intensive part) of our load

generator script, which requires considerable disk usage

consumption. This makes the disk queue length of the VM

up to six times longer than in the physical one in some

scenarios. Another source of overhead comes from Dom-0

managing multiple VMs, as there is the context switching

that consumes CPU. The CPU pinning then becomes an

important aspect to be configured, as it determines how

much CPU should be assigned to the VM manager. As

observed in our experiments through the disk queue length

metric, assigning more CPU to the manager reduces the

I/O overhead, providing faster response times and higher

throughput. The drawback is that, CPU is then removed from

the VMs to perform CPU-intensive tasks. Therefore, there

is a complex trade-off that has to be evaluated for each sce-

nario. From our experiments, thus, the main findings of this

paper are that physical machines produce steadier and better

results under heavy load and that the CPU pinning schema



is an important configuration when setting up a virtualized

environment for load generation. For the load generator

script without the I/O intensive phase, we observed that

VM is a good alternative for replacing physical machines.

Therefore, test engineers should be careful when analyzing

performance data from virtual machines and tuning the

computing environment, especially for scenarios with heavy

I/O operations.

One of the main future directions from this work is to

define a system overhead model that can be used for software

performance tests. Several companies have been adopting

virtualization technologies to reduce costs, mainly associated

with the number of servers used to perform tests. Therefore,

as many overhead issues cannot be eliminated to compete

with executions based on physical machines, it is important

to have a system overhead model that can be used along

with the software testing analysis, which would then allow

more reliable results on virtualized environments.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for their

comments on the paper. The experiments were performed

in the High Performance Computing Lab at Catholic Uni-

versity of Rio Grande do Sul (LAD-PUCRS), Brazil, in

partnership with Dell Brazil. Avelino F. Zorzo is a researcher

supported by CNPq/Brazil. This work has also support from

FAPERGS/CNPq.

REFERENCES

[1] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane,
D. Dimatos, G. Hamilton, M. McCabe, and J. Owens, “Quan-
tifying the performance isolation properties of virtualization
systems,” in Proceedings of the Workshop on Experimental
computer science (ExpCS’07). ACM, 2007.

[2] A. Ranadive, M. Kesavan, A. Gavrilovska, and K. Schwan,
“Performance implications of virtualizing multicore clus-
ter machines,” in Proceedings of the 2nd Workshop on
System-level Virtualization for High Performance Computing
(HPCVirt’08), ser. HPCVirt ’08. ACM, 2008.

[3] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa,
and M. Sato, “D-cloud: Design of a software testing environ-
ment for reliable distributed systems using cloud computing
technology,” in Proceedings of the 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing
(CCGRID’10). IEEE Computer Society, 2010.

[4] S. Gaisbauer, J. Kirschnick, N. Edwards, and J. Rolia, “VATS:
Virtualized-Aware Automated Test Service,” in Proceedings
of the 5th International Conference on Quantitative Evalua-
tion of Systems (QEST’08), 2008.

[5] N. Duro, R. Santos, J. ao Lourenço, H. Paulino, and J. ao
Martins, “Open virtualization framework for testing ground
systems,” in Proceedings of the 8th Workshop on Parallel
and Distributed Systems: Testing, Analysis, and Debugging
(PADTAD’10). ACM, 2010.

[6] G. hun Kim, H. choun Moon, G.-P. Song, and S.-K. Shin,
“Software performance testing scheme using virtualization
technology,” in Proceedings of the 4th International Con-
ference on Ubiquitous Information Technologies Applications
(ICUT’09). IEEE, 2009.

[7] U. Drepper, “The cost of virtualization,” Queue, vol. 6, pp.
28–35, January 2008.

[8] I. Burnstein, Practical software testing: a process-oriented
approach. Springer-Verlag, 2003.

[9] E. J. Weyuker and F. I. Vokolos, “Experience with per-
formance testing of software systems: issues, an approach,
and case study,” IEEE Transactions on Software Engineering
(TSE’00), vol. 26, no. 12, pp. 1147–1156, dec. 2000.

[10] M. Woodside, G. Franks, and D. C. Petriu, “The future of
software performance engineering,” in Proceedings of the
Future of Software Engineering (FOSE’07). Washington,
DC, USA: IEEE Computer Society, 2007.

[11] G. J. Myers and C. Sandler, The Art of Software Testing,
2nd ed. John Wiley & Sons, June 2004.

[12] J. Z. Gao, J. Tsao, Y. Wu, and T. H.-S. Jacob, Testing and
Quality Assurance for Component-Based Software. Nor-
wood, USA: Artech House, Inc., 2003.

[13] I. Molyneaux, The Art of Application Performance Test-
ing: Help for Programmers and Quality Assurance, 1st ed.
O’Reilly Media, Inc., 2009.

[14] R. Zheng, H. Wang, and Y. Pang, “Research on bio-inspired
multi-net paralleling mechanism based on web application,”
in Proceedings of the 7th international conference on Com-
putational Science (ICCS’07). Springer-Verlag, 2007.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the 9th ACM Symposium on
Operating Systems Principles (SOSP’03). ACM, 2003.

[16] G. Somani and S. Chaudhary, “Load Balancing in Xen Virtual
Machine Monitor,” Contemporary Computing, pp. 62–70,
2010.

[17] L. Cherkasova and R. Gardner, “Measuring CPU overhead
for I/O processing in the Xen virtual machine monitor,” in
Proceedings of the Annual Conference on USENIX Annual
Technical Conference. USENIX Association, 2005.

[18] J. Appavoo, A. Waterland, D. Da Silva, V. Uhlig, B. Rosen-
burg, E. Van Hensbergen, J. Stoess, R. Wisniewski, and
U. Steinberg, “Providing a cloud network infrastructure on
a supercomputer,” in Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Comput-
ing (HPDC’10). ACM, 2010.

[19] J. Wei, J. R. Jackson, and J. A. Wiegert, “Towards scalable
and high performance i/o virtualization - a case study,” in Pro-
ceedings of the High Performance Computation Conference
(HPCC’07), 2007.

[20] J. Liu and B. Abali, “Virtualization polling engine (vpe):
using dedicated cpu cores to accelerate i/o virtualization,”
in Proceedings of the 23rd International Conference on
Supercomputing (ICS’09). ACM, 2009.


