
Scheduling Complex Computer Simulations on Heterogeneous Non-dedicated
Machines: A Case Study in Structural Bioinformatics?

Marco A. S. Netto‡, Ardala Breda, Osmar Norberto de Souza
Programa de Pós-Graduação em Ciência da Computação - PPGCC

Faculdade de Informática - FACIN
Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS

Porto Alegre, Brazil
{stelmar,abreda,osmarns}@inf.pucrs.br

Abstract

Complex computer simulations are a class of applica-
tions that demands high performance processing power in
order to be realized in a feasible time. To achieve this pro-
cessing power, networks composed of non-dedicated ma-
chines are increasingly being investigated. An efficient
scheduling scheme is one of the most important issues
to make a better use of these resources. In this paper
we present an architecture for scheduling complex com-
puter simulations aimed at heterogeneous non-dedicated
machines which relies on information provided by the mod-
els that are being simulated. Furthermore, a case study
demonstrates how the proposed architecture can assist in
the execution of complex simulations applied to the protein
structure prediction problem, which is one of the most im-
portant current challenges in structural bioinformatics.

1. Introduction

Computer clusters are a well-known alternative to su-
percomputers when high performance computing is needed.
Although clusters provide a very good cost/benefit rate, they
still are very expensive for some realities around the world.
Another approach to achieve the processing power for exe-
cuting complex applications is by exploiting idle CPU cy-
cles in computer networks. This approach is becoming in-
creasingly investigated due to the vast amount of physics,
biological and chemical applications that can benefit from
the massive computing power being wasted all over the
world [18].

?This research was developed at PUCRS and supported by grantsfrom
CAPES, CNPq and FAPERGS to Osmar Norberto de Souza.

‡Marco is currently a PhD student, at Universidade de São Paulo, and
member of InteGrade Project (http://gsd.ime.usp.br/integrade). InteGrade
is supported by a grant from CNPq, process number 552028/02-9.

SETI@home [2], Folding@home [15], FightAIDS@-
Home [7] and Screensaver Lifesaver [17] are examples of
projects that use geographically distributed resources to
solve complex problems. Although there are several appli-
cations that already benefit from these distributed resources,
many fundamental challenges are still being investigated,
such as scheduling and distribution of tasks, fault tolerance,
heterogeneity, scalability and security [9]. One of the main
issues to achieve an efficient use of distributed resources is
the scheduling of the tasks that comprise the user applica-
tions.

In this paper we focus our work on the scheduling of in-
dependent simulations that are performed in heterogeneous
non-dedicated machines. As computer simulations address-
ing the solution of complex problems are always in need
of an ever increasing computing power, they are a very
important class of applications that can benefit from the
utilization of distributed environments composed of non-
dedicated machines. The main goal of this work is to de-
scribe an architecture for scheduling computer simulation
that relies on output files generated by the simulation tools
and the ability of these tools to restart simulations from their
interrupted states. In order to demonstrate the use of the
proposed architecture, we provide some initial experimental
results by using a case study applied to the protein structure
prediction problem, which is one of the most important cur-
rent challenges in structural bioinformatics. It is important
to highlight that the proposed architecture is not to be com-
pared to or substitute the well-known resource managers,
such as Globus [8] or Condor [10]. Rather, it constitutes a
scheduling module that can be incorporated in these soft-
ware systems to be used in a grid computing environment.

The remainder of this paper is organized as follows: Sec-
tion 2 presents some related work and the motivation for the
proposed architecture; Section 3 describes the architecture,
including the description of its modules and the information

flow among the architecture internals components; Section
4 describes a case study illustrating how the architecture can
assist in the execution of computer simulations applied to
the protein structure prediction problem, including prelimi-
nary results; and finally, Section 5 presents our conclusions
and future work.

2. Related Work and Motivation

There are several ongoing projects related to the execu-
tion of tasks in distributed environments [1,3,6,13,16,21].
Some of the available software systems support heteroge-
neous resources, specification of user requirements (e.g.,an
application must be executed on a Pentium IV with a RAM
of 2GB and the GNU/Linux operating system) [6], execu-
tion of parameter sweep applications [1] and migration of
tasks [13]. Moreover, there are statistical techniques avail-
able for estimating resources characteristics to improve the
performance of the user applications [21], as well as soft-
ware systems that perform scheduling by replicating tasks
when there are more computer resources than tasks to be
executed [16].

Although many software systems provide valuable func-
tionalities, the current execution information of the userap-
plication are not usually exploited. Another possibility is
to build the user applications on a framework that provides
services for scheduling tasks and load balancing at the ap-
plication level [3]. Although such an approach provides
good performance results, the source code of most scientific
applications is usually large and too complex to be easily
modified, thus demanding time and human resources, which
are often unavailable. Furthermore, depending on the case,
users may not have access to the source code of the appli-
cations or they are unable to modify the source code due to
license issues.

In the architecture proposed here the scheduling process
is accomplished by heuristics based on monitoring infor-
mation from the user simulations. The idea of this work is
to use two important functionalities that are, in general, al-
ready available in the simulation tools: the ability of restart-
ing a simulation from its interrupted state, through the use
of checkpoint files, and the periodic generation of the output
files. The checkpoint files can be used to restart a simulation
if a computer becomes available, or to migrate a simulation
to another computer. The output files provide relevant infor-
mation on the current state of the simulating model, which
can in turn be used to figure out whether a simulation is
yielding or not the desired results. Using this information
a decision is then taken on whether the simulation should
continue in the same resource, migrated to another hetero-
geneous resource or be cancelled out. All these analyses
and decisions are taken based on heuristics defined by the
user.

The approach we are developing and presenting here
is very important for an efficient investigation of complex
scientific problems that demand the realization of multiple
simulations of a single model in order to find the one that
best describes its real system counterpart. As many of these
simulations will produce undesirable results, they must be
identified as early as possible along their execution in order
to allow the modification of the simulation input parameters
or the model itself, therefore minimizing the time spent in
their search. For these reasons it is essential to secure that
the best simulations are always being executed and, if pos-
sible, in the best available computer resources. Note that
this architecture is not aimed at optimizing the execution
time of all simulations provided by the users, but only those
yielding the best results as specified by the heuristics.

3. Architecture Internals

The proposed architecture comprises two modules (Fig-
ure 1). The first one is the server module, which is re-
sponsible for scheduling and distributing the simulations.
The server module is executed in the server machine, which
constitutes a gateway between the users and the worker ma-
chines. The second one is the worker module, which is re-
sponsible for controlling the execution of the simulations.
The worker module is executed in the machine that supplies
the computing power. Communications occur only between
the server and the workers, that is, the workers do not share
information among themselves.

3.1 Worker module

The worker module is responsible for starting and stop-
ping the simulations in the worker machines, as well as col-
lecting information on the current state of the ongoing sim-
ulations. This module relies on two main components: the
communication layer and the execution monitor (Figure 1).

The worker communication layer is the component
that holds information about the worker, such as hostname,
computer power and the identification of the simulation that
it is performing. Its main goal is to provide a mechanism to
exchange information between the worker and the server.

The execution monitor is a plugin defined by the user
in order to filter the simulation output data written to disk
so as to facilitate the scheduling procedure accomplished
in the server. When the filtered data are available, the exe-
cution monitor notifies the communication layer to transfer
the data to the server. In order to prevent unnecessary mes-
sages to be sent to the server, the worker communication
layer verifies whether the data are different than the previ-
ous ones.

Send S
im

ulatio
ns

Colle
ct

Resu
lts

User

C
O

M
M

U
N

IC
A

T
IO

N
 L

A
Y

E
R

EXECUTION
(SIMULATION)

(PLUGIN)

EXECUTION
MONITOR

GENERATOR OF
PRIORITIES

(PLUGIN)

SCHEDULER

Server Machine

Server Module

Cancel Simulation
Send Simulation

Put in Action

Send Simulation Data

Read

Write

Worker Module

Write

Read

Worker Machine

LAYER
COMMUNICATION

Filtered
Data

Simulation
Data

����

Figure 1. The architecture’s components and their informat ion flow.

3.2 Server module

The server module is responsible for scheduling and dis-
tributing the simulations among the workers. It consists
mainly of three components, namely the scheduler, the gen-
erator of priorities and the communication layer (Figure 1).

The server communication layer is basically used to
transfer information to and from the worker machines. Ex-
amples of information are: requests to cancel an ongoing
simulation or start a new one, receive simulation data from
the worker machines to perform the scheduling procedure,
as well as keep-alive messages to verify the workers’ avail-
ability.

Thegenerator of priorities (GP) is a plugin built by the
user, that relies on an Application Programming Interface
(API) which provides two functions: update the data from a
simulation and, based on these data, generate the priorities
of the simulations. Applying the heuristics, defined in this
component, the filtered data received from the workers are
converted to priority values. When a priority of a simulation
is modified, the scheduler is put in action.

With the priorities of the simulations available, the
schedulerdecides where each simulation must be executed.
Note that the assignment of the simulations to the workers
may involve the migration of a simulation from a resource
to another, as well as the temporary interruption of an on-
going simulation.

In order to perform the correct scheduling, it is neces-
sary to verify the workers’ availability that are supposedly
executing simulations. This verification becomes necessary
mainly because the architecture was designed to support
non-dedicated machines, therefore faults are a rule and not

an exception. The goal of the algorithm used in the sched-
uler is to assign the best workers to the simulations that are
yielding the best results, that is, those that hold the higher
priorities. Considering that the workers join and leave the
network and the priorities of the simulations are modified
during their execution, the scheduling is dynamically per-
formed. The verification of the workers’ availability must
be effected before the scheduling of the simulations, as well
as at time intervals in order to keep all the simulations exe-
cuting. Thus, if the server detects that a simulation was in-
terrupted due to its worker is not more available, the server
tries to assign this simulation to another worker, whenever
possible.

3.3 Implementation of the architecture

The architecture described here is already implemented
using the C language. We have also implemented a sim-
ulator of the architecture where the main difference to the
software of the architecture is that the simulator distributes
the computer simulations to a local machine. In addition to
the functionalities described in this paper, others were in-
cluded in the simulator, such as the simulation of the work-
ers’ availability. Instead of users having to include or re-
move the workers randomly and at any time, an option was
implemented to make possible to define workers and their
availability according to periods of day.

In the current implementation of the architecture we as-
sume the server and worker machines as having the same
view of the file system, hence turning the distribution of the
simulations considerably simple. The distribution basically
involves the transference of a file which has the paths to the

following inputs: the simulation input files, the simulation
tool and the script or program that implements the execution
monitor.

4 Case Study: Molecular Dynamics Simula-
tions of Proteins

One of today’s challenges following the post-genomic
era, that is, the high-throughput sequencing of genomes, is
the conversion of these data into useful information such as
translation of nucleotide sequences into known genes and,
ultimately, to proteins with a characterized structure and
function [14].

Not all proteins can have their three-dimensional (3D)
structure known by experimental methods. Thus, new meth-
ods for protein structure determination become necessary,
and that is one of the major goals of structural bioinformat-
ics, the development and utilization of computational tools
to characterize these proteins, including the prediction of
their 3D structures, in order to infer hypotheses about their
functions [14,19].

There are different computational approaches to predict
protein structure [20]; herein we focus on the molecular dy-
namics (MD) method. MD is based on the principles of
classical mechanics and can give a microscopic view of the
behavior of each atom that composes a system like a pro-
tein [12]. In a MD simulation, the dynamic behavior of a
protein is provided, and once the given ensemble (the group
of structures generated along the simulation) reaches the
equilibrium, parameters such as the average structure can
be calculated [5].

We are currently developing MD protocols to enable the
correct prediction of any protein 3D structure, using only
the linear sequence of amino acids of a protein as the initial
information. Figure 2 illustrates a set of snapshots gener-
ated by one of the simulations of the polyalanine 12 (PA12),
the model protein1 used in our experiments, as well as the
reference structure, which is the one we desire to achieve.
As a means to standardize our MD protocols we experi-
ment with different parameters available from AMBER [4],
a well-known set of computer programs aimed at perform-
ing MD simulations of biomolecules.

One approach to simulate our models is by executing the
simulations one by one on a cluster, since AMBER sup-
ports Message Passing Interface (MPI) [11]. Another ap-
proach is to execute the simulations on networks composed
of non-dedicated machines. Due to the amount of exchange
information necessary among the processes to execute the
simulations using the MPI version of AMBER, the easiest
way to perform the simulations is by executing each differ-
ent simulation on a single computer.

1Our model protein is a polypeptide of 12 alanine amino acids.

Figure 2. Examples of snapshots generated
by a MD simulation of PA12.

In order to improve the utilization of the computing
power available, we developed an architecture aimed at pri-
oritizing the simulations that provide the best results. The
challenge in using this architecture now lies in choosing the
best simulations on-the-fly. For this reason, the model to
be simulated and the output files provided by the simulation
tool must be analyzed in details to build efficient plugins,
that is, the execution monitor and the generator of priori-
ties.

To evaluate the architecture, we have simulated a small
model protein for 2 nanoseconds (biological process time).
Different results were generated by performing 15 simu-
lations of the same protein, varying two input parameters.
The first parameter is the final temperature of the protein,
and the second one is the seed number to generate the ini-
tial velocities of the atoms. In AMBER, a simulation can be
executed in packages so as to allow it to be restarted from
the last simulated package if it is interrupted. Thus, the mi-
gration process is performed by canceling the current execu-
tion of a simulation and restarting it from the last completed
package. In our experiments, we defined 20 packages, each
one corresponding to 100 picoseconds.

4.1 Choosing the best simulations

In order to schedule the simulations, two procedures
must be performed: (i) determine parameters that define if
a simulation is yielding satisfactory results and (ii) specify
how to use these parameters. The first task is performed by
the execution monitor and the second one by the generator
of priorities.

To choose the best of a set of protein simulations we
have used the root mean square deviation (RMSD), a pa-
rameter that shows how similar, or even how different, two
structures are; herein the simulated trajectory is compared
to the experimentally refined structure. Plotting the RMSD
versus time, the evolution of the protein can be seen, from
the extended/non-native state (higher RMSD values) to its
native, biologically functional state (lower RMSD values).
With these values two different structures, in this case the
simulated and the reference one, can be compared. The
lower the RMSD, the better is the simulation, being there-
fore favored in the scheduling process. The RMSD can be

 0
 1
 2
 3
 4
 5
 6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
Q

I (
Å

)

Time of the biological process (picoseconds x 100)

Simulation 1
Simulation 8

Figure 3. Behavior of the SQI in relation to the
time of two simulations.

obtained by filtering the output files generated by AMBER
while the simulations are being executed. In AMBER, for
each picosecond simulated (biological process time), a new
RMSD becomes available. However we decided to create
a new parameter, calledSimulation Quality Index (SQI) ,
which represents the average of the 100 RMSDs of a pack-
age in addition to its standard deviation. Thus, when a pack-
age becomes completed, the worker sends to the server the
SQI of its simulation.

The next step is the definition of how to use the SQI,
which is done in the generator of priorities. In our exper-
iments we have developed three GPs, GP1, GP2 and GP3,
that were built to work with three, four and eight priorities
respectively:

1. GP1:

Priority =

3 : 0 < SQI ≤ 2

2 : 2 < SQI ≤ 3

1 : SQI > 3

2. GP2:

Priority =

4 : 0 < SQI ≤ 1.5

3 : 1.5 < SQI ≤ 2.5

2 : 2.5 < SQI ≤ 3.5

1 : SQI > 3.5

3. GP3:

Priority =

8 : 0 < SQI ≤ 1.4

7 : 1.4 < SQI ≤ 1.6

6 : 1.6 < SQI ≤ 1.8

5 : 1.8 < SQI ≤ 2.0

4 : 2.0 < SQI ≤ 2.25

3 : 2.25 < SQI ≤ 2.5

2 : 2.5 < SQI ≤ 3.0

1 : SQI > 3

It is expected that some simulations will have their pri-
orities more varied than others, thus generating excess mi-
grations. Figure 3 illustrates the behavior of SQI of each
simulated package in relation to the biological time of two
simulations: Simulation 8, which yields desirable structures

since its SQI seldom oscillates about 1.5 Å, and Simulation
1, which yields undesirable results because its SQI oscil-
lates frequently.

In order to implement the GPs, the two API functions
available in the architecture were used (Section 3.1). The
first one basically involves the update of the SQI values of
a simulation when a package becomes completed. In this
function the user only needs to declare the variable SQI to
be updated. The second one is the function responsible for
generating the priority of a simulation, which consists of a
set of conditional statements to compare the SQI value of a
simulation with the user defined ranges.

4.2 Description of the experiments: simulating a
protein

The experiments were executed using the simulator, as
well as the architecture in a real network. For both en-
vironments, the network used to perform the simulations
was composed of 15 workers with three different comput-
ing power. In relation to the workers’ availability, it was
assumed that, in a period of four hours, during three hours
all workers were available and during one hour only 50% of
them were available.

To perform the experiments in the simulator, the out-
put files of the protein simulations previously realized were
used. This method was adopted since the execution of all
simulations in a single machine at the same time would not
be possible due to the computing power limitation. There-
fore, the protein simulations were performed one by one in
a single machine and all the output files were saved. Us-
ing these files, the SQI values were calculated and filtered,
at 100 picoseconds time intervals, for each simulation. To
simulate the behavior of a simulation in relation to the gen-
eration of the output files, it was implemented a simple pro-
gram to read the file that has the list of all SQIs and store
the last SQI read in an output file. This program can also
be interrupted and restarted from the last completed step
(or package in a real simulation), as well as to generate the
output files using a frequency according to the worker com-
puting power. In order to be able to perform several ex-
periments in a short period of time, the time scale in the
simulator was reduced 50 times. That is, each hour in the
simulations represents 72 real seconds.

The real environment where the experiments were per-
formed is composed of 15 heterogeneous machines inter-
connected by a Fast-Ethernet network2. The only differ-
ence among the machines are their processors, which are
Pentium 32 bits with three distinct processor frequencies.

2Machines managed by Research Center in High Performance Com-
puting - CPAD - http://www.cpad.pucrs.br.

Table 1. Completion order of the simulations.

Simulation SQI (Å) Simulator Real Environment

without GP GP1 GP2 GP3 without GP GP1 GP2 GP3
8 1.7± 0.6 8 3 2 3 10 7 3 1
7 1.7± 0.8 7 2 1 1 6 2 2 2
6 1.8± 0.7 6 1 5 5 13 1 4 5
13 1.9± 0.4 10 6 6 6 11 3 11 4
5 1.9± 0.6 5 4 3 4 5 4 1 6
14 1.9± 0.8 11 8 9 7 9 6 8 7
15 2.1± 1.0 12 5 4 2 12 5 5 3
12 2.5± 0.7 9 9 7 8 8 15 7 8
4 2.6± 0.9 4 7 8 10 4 8 6 12
10 2.9± 0.6 13 10 13 14 14 9 13 13
11 3.0± 0.7 14 12 12 12 15 12 12 14
3 3.0± 0.8 2 11 10 9 1 10 9 9
1 3.1± 0.6 3 14 11 15 2 13 10 10
9 3.2± 0.7 15 15 15 13 7 14 15 15
2 3.3± 0.6 1 13 14 11 3 11 14 11

4.3 Experimental results

Table 1 illustrates the order in which the simulations
were completed in the experiments performed both in the
simulator and in the real environment. The data are sorted
by the average of the Simulation Quality Index (SQI) of all
20 simulated packages. When no priorities were used, the
simulations were completed without an order. Therefore,
in order to discover the best simulations, that is, those with
lowerSQI values, all simulations must be completed. Using
GPs, the best simulations were completed before the worst
ones, hence achieving the expected goal. However, using
them means to incorporate a considerable cost due to the
execution wasted by migrations.

Table 2 summarizes the costs generated by using GPs
in relation to the execution of the simulations without GPs.
The costs were analyzed using three parameters. The first
one is the amount ofExecution Time (ET) for all simula-
tions. The ET of a simulation begins when a simulation is
submitted to the server and finishes when the simulation is
completed. The second parameter is theNumber of Mi-
grations (NM) occurred during the execution of all simula-
tions. The NM represents the number of times a simulation
was migrated from a worker to another, as well as when a
simulation is interrupted due to its worker becomes unavail-
able, and after that, it is assigned to another worker or to the
same one. The last parameter is theWasted Time (WT) of
all simulations. WT measures the wasted time of an execu-
tion when a simulation is interrupted during the execution
of a package. This interruption may occur in two cases: (i)
the simulation worker becomes unavailable; or (ii) a sim-
ulation with a higher priority needs its worker. The data

show that the cost of using GPs increases with the number
of priorities and the size of the SQI ranges specified in each
GP.

Although there exists a considerable cost when GPs are
used, the data presented in Table 2 take into account the
execution of all simulations of PA12. It is possible to cre-
ate another scenario where it is not necessary to execute all
simulations. In case a user, for example, needs only some
simulations that satisfy a determined criterion, the use of
GPs becomes very important. The following hypothesis il-
lustrates such a scenario.

Table 2. Costs generated by using the GPs.
Environment_GP ET (%) NM (%) WT (%)
simulator_GP1 12.96 440.00 222.46
simulator_GP2 13.72 440.00 215.08
simulator_GP3 18.70 696.00 318.77
real_GP1 9.55 372.00 226.34
real_GP2 11.99 420.00 285.60
real_GP3 17.91 724.00 399.18

Let us consider a user that needs onlyN simulations that
generate 3D structures withSQI lower than or equal to 2.0
Å. Figures 4a and 4b illustrate the total execution time of
the N simulations that satisfy the criterion established by
this user. In the experiments realized in the simulator, GP1
is the best in all cases. Regarding the experiments realized
in the real environment, GP1 and GP2 are the most efficient,
with the exception of GP3 whenN is 5. Since GP1 is the
best GP in three cases (N = 1, 2 e 6), and GP2 in two cases
(N = 3 e 4), then GP1 is the most indicated to perform the

 300

 350

 400

 450

 500

 1 2 3 4 5 6

T
im

e
to

 c
om

pl
et

e
N

 s
im

ul
at

io
ns

 (
s)

Experiments in the simulator

without GP
GP1
GP2
GP3

Number N of completed simulations with SQI lower than or equal to 2.0 Å

(a)

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6

T
im

e
to

 c
om

pl
et

e
N

 s
im

ul
at

io
ns

 (
m

in
)

Experiments in the real environment

without GP
GP1
GP2
GP3

Number N of completed simulations with SQI lower than or equal to 2.0 Å

(b)

Figure 4. Efficacy of the scheduling when the user needs only t he best simulations.

simulations in the real environment. In this example, we can
conclude that the utilization of GPs is important when there
is no need to complete all simulations. The advantage of
this approach is that the users can have their results earlier
and, consequently, are able to execute new simulations of
other models, or even to execute simulations of the same
model but with new input parameters.

It is important to highlight that the GPs were built know-
ing that PA12 holds a structure of easy prediction. If we
did not have a good knowledge about PA12, we could cre-
ate GPs with SQI ranges higher or lower than those defined
in the experiments, which would not effect the use of pri-
orities. Therefore, the challenge of using the proposed ar-
chitecture is in the building of good generators of priorities
through the knowledge of the simulated models.

5 Concluding Remarks and Further Work

In this paper we have presented an architecture aimed at
scheduling complex computer simulations on environments
composed of heterogeneous non-dedicated machines. The
proposed architecture has been designed to allow the best
simulations to be executed first and in the best machines. In
order to achieve this goal, the architecture utilizes the files
generated by these simulations, allowing the users to auto-
matically prioritize the simulations without modifying the
simulation tools or linking them to any library. The user
only needs to build two simple plugins: one to filter the
simulation data and the other to use the filtered information
to determine the simulation priorities. Furthermore, the ar-
chitecture has been implemented in order to be the most
generic as possible in the sense that several simulation tools
could be utilized, and, hence, many researchers could per-
form their complex simulations in environments composed
of non-dedicated machines.

From the initial experiments based on a well-known
structural bioinformatics problem, it could be observed that
the architecture has achieved its expected purpose. How-
ever, several improvements are in course. Some of them
are:

• Partial execution of the simulations: in our experi-
ments we have observed that some simulations become
stable after a short period of time. Thus, it is interest-
ing to incorporate into the GPs stop criterion for the
simulations in order to allow new ones start executing
as soon as possible;

• Dynamic generator of priorities: the construction of
good GPs is fundamental to the efficient use of the re-
sources. However, the users, when simulating their
models, may not have any idea about the behavior of
their simulations. Therefore, a very useful approach
to solve this problem is to build GPs dynamically and
automatically using the information about the ongoing
simulations. When this component becomes available,
the only task the user will need to take care of is the
definition of parameters to be used in GPs;

• Implementation of the plugins: currently the GP
must be implemented in C language, and the execution
monitor also in C or in a script language. We are study-
ing alternatives to make easier the development of the
architecture plugins. This is particularly important be-
cause we desire that researchers with no expertise in
computer science could benefit from this architecture
to perform their simulations;

• Minimizing migrations : we are studying some ap-
proaches to minimize the amount of work lost due
to migrations. For example, one approach is to de-
fine that a simulation closed to generate checkpoint-
ing files could not be migrated even if a simulation
with a higher priority needs its worker. Another ap-
proach is to automatically define the frequency in
which checkpointing files are generated in the sim-
ulation tool. Higher frequencies may minimize the
amount of wasted work, however, the amount of bytes
to be stored and transfered may increase;

• Computational Grid infra-structure : the proposed
architecture was not designed to be a complete com-
putational grid infra-structure to provide functionali-
ties of security, transference of files and user graphical

interface. For this reason, the architecture developed
here must be adapted in a robust grid infra-structure,
such as Globus [8] or Condor [10], in order to incor-
porate more functionalities. In this context, one im-
portant issue is the scalability, since the migrations of
simulations may increase the execution time. One pos-
sible approach is to execute the simulations in groups
of machines with a good connectivity, and thus allow-
ing the migrations only among these machines.

The architecture presented in this work is related to the
scheduling of applications in distributed systems. In com-
putational grids, the scheduling of applications is a complex
problem due to the heterogeneity and the dynamicity of the
resources. Therefore, this work has illustrated an alternative
in which it is possible to use the applications information,in
this case computer simulations, to scheduling them without
modifying the simulation tools.

Structural bioinformatics is one of the promising areas
in need of utilizing the available resources in computational
grids. The prediction of protein 3D structure from sequence
alone is particularly important since the knowledge of these
structures can be used to design new or alternatives drugs
for the treatment of diseases. Therefore, in this context,
the work presented here may be used to assist scientists to
make a better use of computing resources through an effi-
cient schedule schema of their simulations.

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A
Tool for Performing Parameterised Simulations using Dis-
tributed Workstations.Proceedings of Fourth IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting, pages 112–121, 1995.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: an experiment in public-re-
source computing.Communications of the ACM, 45(11):56–
61, 2002.

[3] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail,
M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,
G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorod-
nov. Adaptive Computing on the Grid Using AppLeS.
IEEE Transactions on Parallel and Distributed Systems,
14(4):369–382, 2003.

[4] D. A. Case, D. A. Pearlman, J. W. Caldwell, T. E. C. III,
J. Wang, W. S. Ross, C. L. Simmerling, T. A. Darden, K. M.
Merz, R. V. Stanton, A. L. Cheng, J. J. Vincent, M. Crow-
ley, V. Tsui, H. Gohlke, R. J. Radmer, Y. Duan, J. Pitera,
I. Massova, G. L. Seibel, U. C. Singh, P. K. Weiner, and P. A.
Kollman. Amber 7.University of California, San Francisco,
2002.

[5] O. N. de Souza and R. L. Ornstein. Molecular dynamics
simulations of a protein-protein dimer: particle-mesh ewald

eletrostatic model yields far superior results to standard cut-
off model. Journal of Biomolecular Structure and Dynam-
ics, 16:1205–1217, 1999.

[6] D. W. Erwin. UNICORE - A Grid Computing Environment.
Concurrency and Computation: Practice and Experience,
14(13-15):1395–1410, 2002.

[7] FightAIDS@home. http://www.fightaidsathome.org. Ac-
cessed on February 2005.

[8] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, 1997.

[9] I. Foster and C. Kesselman.The Grid: Blueprint for a New
Computing Infrastructure. Morgan-Kaufman, San Fran-
cisco, CA, 1999.

[10] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids.Cluster Computing, 5:237–246, 2002.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard.Parallel Computing, 22(6):789–
828, 1996.

[12] W. F. V. Gunsteren and H. J. C. Berendsen. Computer sim-
ulation of molecular dynamics: methodology, applications,
and perspectives in chemistry.Angew. Chem. Int. Ed. Engl,
29:992–1023, 1990.

[13] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter
of idle workstations.Proceedings of the 8th International
Conference of Distributed Computing Systems, pages 104–
111, 1988.

[14] N. M. Luscombe, D. Greenbaum, and M. Gerstein. What is
Bioinformatics? A Proposed Definition and Overview of the
Field. Methods in Medical Informatics, 40:346–258, 2001.

[15] V. S. Pande, I. Baker, J. Chapman, S. Elmer, S. M. Larson,
Y. M. Rhee, M. R. Shirts, C. D. Snow, E. J. Sorin, and B. Za-
grovic. Atomistic protein folding simulations on the submil-
lisecond time scale using worldwide distributed computing.
Peter Kollman Memorial Issue, Biopolymers, 68(1):91–109,
2003.

[16] D. Paranhos, W. Cirne, and F. Brasileiro. Trading Cycles for
Information: Using Replication to Schedule Bag-of-Tasks
Applications on Computational Grids.Proceedings of the
Euro-Par 2003: International Conference on Parallel and
Distributed Computing, pages 169–180, 2003.

[17] W. G. Richards. Virtual screening using grid computing:
the screensaver project.Nature Reviews Drug Discovery,
1:551–555, 2002.

[18] M. Shirts and V. Pande. Screen savers of the world, unite!
Science, 290(8):1903–1904, 2000.

[19] D. Shortle. Prediction of Protein Structure.Current Biology,
10:R49–R51, 2000.

[20] C. M. Smith. Molecular modeling in the genomics era.The
Scientist, 15(5), 2001.

[21] R. Wolski. Experiences with predicting resource perfor-
mance on-line in computational grid settings.ACM SIG-
METRICS Performance Evaluation Review, 30(4):41–49,
2003.

