
Exploiting Workload Cycles for Orchestration of
Virtual Machine Live Migrations in Clouds

Artur Baruchia,∗, Edson T. Midorikawaa, Liria M. Satoa, Marco A. S. Nettob

aUniversity of Sao Paulo, Brazil
bIBM Research, Brazil

Abstract

Virtual machine live migration in cloud environments aims at reducing en-
ergy costs and increasing resource utilization. However, its potential has
not been fully explored because of simultaneous migrations that may cause
user application performance degradation and network congestion. Research
efforts on live migration orchestration policies still mostly rely on system
level metrics. This work introduces an Application-aware Live Migration
Architecture (ALMA) that selects suitable moments for migrations using ap-
plication characterization data. This characterization consists in recognizing
resource usage cycles via Fast Fourier Transform. From our experiments, live
migration times were reduced by up to 74% for benchmarks and by up to
67% for real applications, when compared to migration policies with no ap-
plication workload analysis. Network data transfer during the live migration
was reduced by up to 62%.

Keywords: Live Migration, Cloud Computing, Virtual Machine, Workload
Cycle Recognition, Server Consolidation, Fast Fourier Transform

1. Introduction

Through multiplexing techniques, virtualization allows for different op-
erating systems and workloads to co-exist on the same hardware, without
users’ perception and interference among themselves. This feature is the
core of cloud computing, which is a concept that dates back to the 1960s [1].

∗Corresponding author
Email address: artur.baruchi@gmail.com (Artur Baruchi)

Preprint submitted to July 27, 2016

ar
X

iv
:1

60
7.

07
84

6v
1 

 [
cs

.D
C

] 
 2

6 
Ju

l 2
01

6



Live migration also allows a Virtual Machine (VM) to be moved across
physical hosts with minimal interruption. This feature brings several benefits
to cloud providers, including policy creation for physical host maintenance
and energy consumption reduction via server consolidation [2]. Another ben-
efit is to distribute VM load among physical hosts to meet circumstantial
computing demand [3].

Despite the resource usage optimization brought by server consolidation
or load balancing policies, they still generate VM performance degradation
[4]. This problem comes mainly from live migration algorithms, whose per-
formance is sensitive to VM memory usage. These algorithms can generate
large data traffic to migrate VMs across hosts, especially when several VMs
are moved simultaneously.

To address this problem, our previous work [5] introduced an Application-
aware Live Migration Architecture (ALMA) which determines, before hand,
suitable moments to move VMs among physical hosts according to VM work-
loads. Our hypothesis is that, we can reduce live migration side effects, such
as data traffic, by choosing the right moment to trigger the migration process.
This hypothesis comes from two observations. The first is live migration algo-
rithms are sensitive to VM memory usage and the second is several industry
and scientific workloads follow a resource usage cyclic pattern. Examples of
these cycle scenarios are: (i) a Web service with higher access during some
periods of day or due to application characteristics that can present long
periods of processor usage after I/O access and (ii) parallel applications with
processes exchanging synchronization messages.

This work presents a detailed description of ALMA algorithms and the
characterization process. Moreover, a new set of experiments to evaluate the
effectiveness of using application characterization data to trigger migrations
and a scalability analysis of our solution is presented. Therefore, we extended
our work with the following contributions:

• Characterization and workload cycle recognition using Fast Fourier
Transform with benchmarks and real scientific applications (§ 4);

• Live migration orchestration based on workload cycle recognition (§ 5);

• Evaluation of the architecture that implements the migration orches-
tration on a private cloud environment, including scalability analysis
of the architecture with data from up to 1,000 VMs (§ 6).

2



2. Motivation and Problem Description

The overhead of live migrations comes mainly from algorithms, like pre-
copy [6] and post-copy [7] and, at first, it is not the scope of server consol-
idation policies to deal with migration algorithm issues. As a result, server
consolidation is barely used inside the cloud provider data centers [8].

The proposed architecture explores live migration algorithm character-
istics and mediates between the consolidation policies and live migration
algorithms, reducing the impact created by multiple concurrent migrations.
Our architecture is based on the observation that several workloads have
cyclic behaviors. Two examples of real workloads with cyclic behavior are
presented in Figure 1, which illustrates the resource usage of a production
data base from a telco company during a week and the resource usage of a
pool of VMs of a big magazine publisher. We can see a cyclic behavior in
both graphs and the best periods to perform live migrations is during the
valleys of the graph, which consist of low resource usage.

20

40

60

80

100

Day

U
sa

ge
 (

%
)

CPU MEM

0

10

20

30

40

IO
P

S

IOPS

1 2 3 4 5 6 7

(a) Data Base real workload.

0

10

20

30

40

50

60

70

Day

U
sa

ge
 (

%
)

CPU MEM

0

30

60

90

120

150

180
NFS Calls

N
F

S
 C

alls

1 3 6 9 12 15 18 21 24 27

(b) Web real workload.

Figure 1: Real workloads with cyclic behaviors.

Figure 2 shows two scenarios for the timing of triggering migrations: one
in which the consolidation triggers live migration just after the definition
of the new physical hosts (without cyclic analysis), and the other scenario,
where VM live migrations are orchestrated according to the their workload
(with cyclic analysis). In the first scenario, live migrations produce more
network traffic, since two (VM01 and VM03) out of three VMs are mi-
grated during a not suitable moment. Moreover, if VM03 live migration were

3



VM01

VM02

VM03

Server Consolidation

(a) Without cyclic analysis.

VM01

VM02

VM03

Server Consolidation

(b) With cyclic analysis.

Figure 2: Live migration orchestration using cyclic analysis: valleys represent
moments where live migrations have potential to congest the network and
peaks represent suitable moments for live migration.

postponed, its workload would be in a suitable moment, avoiding network
congestion—which is the second scenario.

The main goal of the cyclic analysis is to identify and extract the work-
load’s execution pattern and postpone live migrations with potential to harm
the network. In Figure 2b, all live migrations were postponed to a suitable
moment to reduce live migration time and network congestion. With our ar-
chitecture, algorithms for server consolidation and live migration (pre-copy
and post-copy) are not modified. Our solution intercepts all pending migra-
tions, and orchestrates them according to the workload cycles. In practice,
there should be modification only in the consolidation strategy APIs for con-
current live migrations.

The problems tackled in this paper are therefore: (i) how to detect ap-
plication resource consumption cycles and (ii) how to use this information
to know suitable moments for moving VMs across physical hosts in order to
minimize network traffic and migration times.

3. Background

In this section we discuss concepts to understand how our architecture can
reduce live migration overhead. These concepts cover pre-copy live migration
algorithm and the basics of server consolidation.

4



3.1. Live Migration
The encapsulation of the operating system execution environment offered

by virtualization is fundamental to live migrations [9]. This feature allows
for: (1) at any time, a VM to be frozen, (2) all necessary information from
restarting the execution to be stored in a file and (3) using this information
to restart a VM on any physical host from the breakpoint.

Live migration algorithms can be classified according to the moment in
which VM’s memory content is copied to its replica on the destination host.
The main migration algorithms are: pre-copy and post-copy. The pre-copy
algorithm copies VM memory before it starts its execution in the destination
host, whereas the post-copy copies VM memory after it starts its execution.

Research studies use four metrics to compare these algorithms—two are
related to performance evaluation and two refer to VM workload overhead
caused by live migration:

• Live migration total time: time interval between the start of the
migration process and the VM execution beginning in destination host;

• Downtime: time interval in which VM is not running nor available to
the user;

• Execution time: execution time of an application, including a possi-
ble migration time;

• Throughput: amount of data processed in a time interval with and
without live migrations.

3.2. Pre-Copy
As pre-copy moves VMs only when their memory is already copied, this

algorithm is more robust and widely used in commercial Virtual Machine
Monitor (VMM) compared to post-copy—we used this algorithm in this pa-
per. The memory is copied between hosts in several iterations and can be
split into five stages [10]:

1. Resource reservation: it checks whether destination host has avail-
able resources to the VM;

2. Iterative copy: the VM’s memory is entirely copied to destination
host in the first iteration. In next iterations only the memory changed
in last iteration is copied (dirty pages);

5



3. Stop and copy: the VM is suspended in source host and the last copy
is performed;

4. Shutdown: the VM is stopped in source host and all resources allo-
cated to the VM are released;

5. Activation: the VM is activated in destination host.

One of the main problems of this algorithm is the possibility of unlimited
cycles of memory copy. To avoid this issue, some VMMs impose conditions
to stop the copy iterations. Taking Xen VMM [11] as example, the stop
conditions are: (i) less than 50 pages marked as dirty since the last iteration;
(ii) maximum of 29 iterations; and (iii) amount of data transferred greater
than three times of memory assigned to the VM.

Furthermore, this algorithm is sensitive to VM dirty page rate and net-
work throughput. Some studies, such as the one from Strunk [12], formalized
the dirty page rate and network throughput dependencies. The author de-
fines an upper and lower limit of the pre-copy algorithm that are presented
in Inequalities 1 and 2 containing limits to migration and downtime time:

Vmem

B
≤ Tmig ≤

(M + 1) ∗ Vmem

B
(1)

0 ≤ Tdown ≤
(M + 1) ∗ Vmem

B
(2)

Where:
Vmem: amount of memory assigned to VM to be moved;
B: network throughput available;
Tmig: live migration duration;
Tdown: downtime duration;
M: number of times allowed to copy the entire memory in iteration phase.

The lower limits of Inequalities 1 and 2 refer to an idle VM. In this
situation, the migration duration is limited only by the network throughput
between the two hosts and the downtime duration due to the low dirty page
rate. However, the upper limit is related to a high dirty page rate, leading
to the occurrence of several copy iterations. The worst case happens when
the dirty page rate is higher than network throughput.

There are other factors that influence live migration duration, as observed
by Xu et al. [13], such as the number of concurrent migrations. However,
the dominant factor to live migration performance is the dirty page rate.

6



3.3. Server Consolidation
Server consolidation policies consist in choosing VMs, according to a given

criterion, and concentrating them into a few physical hosts. Server consol-
idation is fundamental to help cloud providers reduce energy consumption.
The main problem of consolidation policies is to find an optimal combina-
tion of VM placement in physical hosts. Another dilemma is how to avoid
concurrent migrations to accomplish an objective [14].

The most common policies of consolidation are based on heuristics [15] or
linear programming [14], where the former is more explored by researchers
due to scalability issues. Consolidation based on heuristics are more flexible
and the final solution (usually suboptimal) is obtained faster. Implemen-
tations based on linear programming are more efficient when dealing with
several restrictions, such as Service Level Agreements (SLAs) and maximum
number of concurrent live migrations.

4. Workload Characterization and Cycle Recognition

Workload characterization is the strategy used to collect information
about what resources and their consumption by applications under analy-
sis. An application can use several computing resources at the same time,
but it is likely that a specific resource is being used more than others. This
behavior can be static, meaning that an application can use a given resource
more from the beginning to the end or dynamic, when during the application
execution, it can use different resources and at various utilization levels. In
this work, the workload characterization is defined in time unit to perceive
fluctuations in resource usage during the application run time. We charac-
terize the workload every fifteen seconds.

Server consolidation relies on workload characterization to avoid the place-
ment of VMs competing for the same resources in the same physical hosts.
There are challenges in cloud workload characterization due to the features
of this paradigm, such as dynamic resource usage [16] and multi-tenancy.
These factors can produce ambiguous signals to the workload classifier and
generate wrong results.

Another common challenge in workload characterization is the data inter-
pretation and gathering from VMs. Virtual Machine Monitors (VMMs) add
a second level of indirection in order to isolate VMs located in the same host.
This extra level, known as Semantic Gap [17], imposes several challenges to
interpret and gather performance metrics.

7



The majority of traditional workload characterization strategies are com-
putationally expensive and prohibitive to be implemented in a cloud data
center running thousands of VMs simultaneously. Recent research findings
specialized in VM characterization are difficult to implement in the cloud,
because such strategies are mostly based on specific VMM metrics [18] or in
VMM’s source code modification [19].

A load index is a metric that aims at quantifying the system load in a
given moment or during a time interval. In this work we used load indexes
related to processor and memory resources, which are enough to identify
other types of load, such as I/O.

4.1. Naive Bayes Classifier
The Naive Bayes (NB) classifier is based on Bayes’s theorem, which is

broadly used in the probability field. The Naive term is due to the assumption
the events’ probability are independent of one another.

The aim of Bayesian classifiers is to estimate the most probable class of a
set of characteristics using probabilities known a priori, which are computed
used a training data set. The Bayes’s theorem requires at least three terms—
one conditional probability and two unconditional probabilities—to compute
a third conditional probability [20].

The quantitative results of the NB classifier is one of its main features.
When submitting data to the classification, the NB classifier returns the most
likely class of that data and their probability, allowing the implementation
of optimization strategies.

4.2. Cyclic Analysis
Once the workload characterization has been completed as LM (live mi-

gration) or NLM (no live migration), cyclic patterns can be extracted, if
any, from the characterization data collected over time. Given that possible
classes are only LM or NLM, workload cycles can be identified and decom-
posed.

The extraction process is made by Fast Fourier Transform (FFT) [21].
FFT has O(n log n) complexity where n is the number of samples used to
compute the cycle. FFT allows to convert time (or space) in frequency.

In this work we define a cycle as a recurrent pattern of a workload, which
can be composed of several moments, suitable or non-suitable to live migra-
tion. Additionally, in a same cycle, there can be several compositions, as
presented in Figure 3. The cycle shape depends on the initial instant t0. If t0

8



LM

NLM

Time

C
la

ss
ifi

ca
tio

n

Cycle A Cycle A' Cycle A''

0 10 30

t0 = 0 t0 = 10 t0 = 30

Figure 3: Shapes for the same cycle.

is in 0, the cycle’s shape will be like A, if t0 is in 10 or 30, the cycle’s shape
will be like A’ and A”, respectively.

A cycle can be simple or complex. A simple cycle is composed of up to
three interleaved intervals, that is, there is a single occurrence of one type of
workload (LM or NLM). In Figure 3 the cycle is simple, even in shape A”,
where we observe three interleaved intervals (LM, NLM and LM). In Figure
4 is presented a complex cycle example, which contains two intervals of NLM
and LM. FFT can identify both types of cycles.

5. ALMA - Application Aware Live Migration Architecture

Cyclic analysis, based on workload characterization, can be used to define
suitable moments to trigger live migrations. To this end, we propose an
architecture, called Application-aware Live Migration Architecture (ALMA)
[5], which intermediates all live migration requests from massive migration
strategies and the VM monitor.

5.1. Architecture Overview
Efforts to solve macro problems in a data center, such as energy consump-

tion, computational waste and live migration algorithm optimizations do not

9



LM

NLM

Time

C
la

ss
ifi

ca
tio

n

Complex Cycle

NLM LM LMNLM

Figure 4: A complex cycle.

address problems related to pre-copy and post-copy algorithm’s limitations.
Our architecture avoids live migration drawbacks by choosing suitable mo-
ments to trigger this operation, which benefits strategies broadly used to
solve macro problems.

Figure 5 illustrates ALMA and the other two most common architectures
for live migration. Figure 5a presents an architecture with no live migration
control—once a VM needs to be moved across hosts, the architecture does so
without any concern about network traffic and other ongoing live migrations
[22]. The architecture presented in Figure 5b implements a control over the
live migrations. However, this control comes from the VM monitor and it
orchestrates ongoing live migrations. The orchestration in this architecture
considers only one or two metrics, such as available network bandwidth.

Our architecture, presented in Figure 5c, has a different approach. When
the live migration plan is created, the architecture receives all live migra-
tion submissions and orchestrates the migrations. The main component of
ALMA is the Live Migration Control Module (LMCM), which is responsible
for migration scheduling based on the VM workload. It can postpone, run
immediately or cancel a live migration. The postponement can occur when
the VM workload is under a not suitable moment to trigger live migration and
then it has to wait for a better moment. However, if the workload is suitable
to be moved, ALMA triggers the migration immediately. If the workload is

10



Consolidation

. . .
Physical

Servers Pool
A

Physical
Servers Pool

B

Physical
Servers

Pool
N

(a) No live migration control.

Consolidation

. . .
Physical

Servers Pool
A

Physical
Servers Pool

B

Physical
Servers

Pool
N

Live Migration Control

(b) Traditional live migration control.

Consolidation

. . .
Physical

Servers Pool
A

Physical
Servers Pool

B

Physical
Servers

Pool
N

Live Migration Control

(c) ALMA Proposal.

Figure 5: Architectures for virtual machine live migration.

almost at the end and the live migration cost is higher than keeping the VM
running on the current physical server, ALMA can cancel the live migration
request.

LMCM accepts parameters from cloud service provider to impose limits,
such as the maximum time a VM can wait to be migrated. This could avoid
long waiting time due to long cycle periods. On the customer side, there
are some parameters that could be implemented, for example the expected
time to finish a given workload and with this information ALMA could avoid
migrations that harm customer-defined thresholds.

5.2. Algorithms
ALMA implementation is based on two algorithms. The first one finds

and extracts cyclic pattern from a workload, while the second computes the
waiting time for a suitable moment for live migration. These algorithms are

11



complementary to one another, since the output from one is used by the other
and could be implemented together. However, for a better understanding of
the strategy, they will be described separately.

The first algorithm uses the workload classification collected for a given
time interval, which is sorted chronologically. Each array position has a
VM characterization for the period of the data collected. Moments are rep-
resented by the array index and the Fast Fourier Transform computes the
cycle size (line 2) based on this array. Thereafter, all analyses occur in the
interval of the array that represents the cycle size.

Algorithm 1 Cycle decomposition in two arrays.
Require: An array C with VM workload classification data for a given time

interval. The array should be chronologically ordered.
1: function Decomposition(C)
2: CycleSize← FFT (C) . Fast Fourier Transform.
3: LMCount← 1
4: NLMCount← 1
5: for i do1CycleSize
6: if C[i] == LM then
7: ArrayLM [LMCount]← i
8: LMCount← LMCount + 1
9: else

10: ArrayNLM [NLMCount]← i
11: NLMCount← NLMCount + 1

12: return ArrayNLM,ArrayLM

The part of the array representing an entire cycle is then split into two
smaller arrays (line 5 to 13). One array stores only suitable moments for live
migration (ArrayLM) and the other stores moments not favorable for live
migration (ArrayNLM).

The second algorithm aims to find the instant in which the workload is
inside a cycle. We use two known variables: (1) the cycle length time, which is
computed in the first algorithm and (2) the workload execution time, which is
the elapsed time of the workload execution. The relative time (Mrelative) can
be computed as the module between elapse time of the workload (Mcurrent)
and the cycle length time (CycleSize, line 2 of Algorithm 2).

After the computation of Mrelative, the next step is to find in which array
it is placed (ArrayLM or ArrayNLM). If the relative moment is placed in

12



ArrayNLM (line 3), we need to find out when the workload will be in suit-
able moment to be migrated (ArrayLM). In order to compute the remaining
time of this period, we look for the first instant longer than the relative
moment in ArrayLM (NextLM, in line 4). The difference between both in-
stants (NextLM and Mrelative) is the remaining time (RemainT ime) to the
workload be feasible to be migrated.

Algorithm 2 Identification of live migration moment.
Require: Cycle size and current moment.
1: function Postpone(CycleSize,Mcurrent)
2: Mrelative ←Mcurrent % CycleSize
3: if find(Mrelative, ArrayNLM) then
4: NextLM ← findGreater(Mrelative, ArrayLM)
5: RemainT ime← NextLM −Mrelative

6: else
7: RemainT ime← 0
8: return RemainT ime

6. Evaluation

Our previous results showed substantial reduction in network data traffic
and live migration time when using workload cycle recognition for live mi-
gration [5, 23]. Here we present a more detailed evaluation with more VMs,
additional applications, and new insights and discussions.

Metrics evaluated in this work are:

• Total migration time (secs): time between the start of a migration
submission and the moment the VM is released from the source host;

• Downtime duration (secs): time in which the migrated VM is un-
reachable from network. Data is collected using ICMP;

• Network data transfer (MB): amount of data transferred in the
network during the live migration;

• Cycle accuracy identification: used to show moments where migra-
tion actually occurred—not when they are requested.

13



Host_A Host_B Host_C Host_D Host_E

NAS Server
NFS Vlan
Migration Vlan
Data Vlan

vm01_A
vm02_A
vm03_A

vm01_B
vm02_B
vm03_B

vm01_C
vm02_C

vm01_D
vm02_D

(a) Before consolidation.

Host_A Host_B Host_C Host_D Host_E

NAS Server
NFS Vlan
Migration Vlan
Data Vlan

vm01_B
vm02_B
vm03_B

vm01_A
vm02_A
vm03_A
vm01_D
vm02_D

vm01_C
vm02_C

(b) After consolidation.

Figure 6: Testbed topology.

We organized our experiments in three parts: (i) workload characteriza-
tion and cycle recognition analysis; (ii) orchestration analysis with bench-
marks and real scientific applications; and (iii) scalability tests to handle
data from hundreds of VMs.

6.1. Experiment Setup
We setup a private cloud with five physical hosts, one Network Attached

Storage (NAS) and ten VMs equally distributed among physical hosts. We
used VMs with three computational resource configurations (Table 1).

Table 1: Virtual Machine configurations used in testbed.

Configuration VCPUS Memory
(MB)

Virtual Machine
(hostname)

Small 1 768 vm02_A vm03_A
vm01_B vm02_B

Medium 2 1024 vm01_A vm01_C
vm01_D vm02_D

Large 2 2048 vm03_B vm02_C

VMs were initially placed in four physical hosts and during the workload
execution, they were consolidated into two physical hosts (Figure 6). The
consolidation moments were randomly chosen to explore various points in
time, having preferences for points where all machines were running work-
loads in order to stress the consolidation policies.

14



Table 2: Benchmarks used in testbeds.

Benchmark /
Application Description Experiment

TeraSort
(MapReduce) Sort algorithm which uses MapReduce paradigm [24]. Scientific

Application Evaluation

BRAMS Brazilian atmospheric model used for weather forecast [25]. Scientific
Application Evaluation

OpenModeller Scientific application used to mode specimen distribution [26].
Scientific

Application and
Characterization Evaluation

SPEC CPU 2k
It is a broadly used benchmark to compare computational systems.
It has several subprograms which stress the processor [27].

Benchmark and
Characterization Evaluation

BT
Part of NASA Parallel Benchmark. This program has a memory
footprint of 650 MB with high rate of dirty page [28].

Benchmark
Evaluation

IOZONE
Benchmark with high usage of I/O subsystem. To avoid cache usage
effect, files are larger than available memory [29].

Benchmark
Evaluation

sleep1 Linux command used to delay processing for a given time. Benchmark
Evaluation

LAME
LAME is an MP3 codifier used as benchmark [30].
We used input file of 2.3 GB.

Characterization
Evaluation

Benchmarks and applications (Table 2) were used to evaluate the char-
acterization strategy and ALMA. OpenModeller, LAME, and SPEC were
used with different VM configurations for workload characterization. The
ALMA evaluation consists of two experimental scenarios in order to create
a controlled scenario. In first scenario we created artificial cycles running
benchmarks with a specific behavior in a given order. The evaluation con-
tains the SPEC benchmark as CPU intensive workload, BT as Memory in-
tensive workload, IOZone as I/O intensive workload and, sleep command to
simulate IDLE periods. The artificial cycles and VMs used are described in
Table 3. The second scenario contains BRAMS, OpenModeller, and TeraSort
where the former two are scientific applications and the latter represents a
typical data-intensive cloud workload, all running simultaneously in different
VMs.

1Available at: http://man7.org/linux/man-pages/man3/sleep.3.html

15

http://man7.org/linux/man-pages/man3/sleep.3.html


Table 3: Artificial cycles used to evaluate ALMA.

Virtual Machine Artificial Cycles

vm03_A
I/O CPU CPU I/O CPU
CPU I/O CPU CPU

vm02_C
MEM IDLE CPU MEM IDLE CPU
MEM IDLE CPU MEM IDLE CPU

vm02_A
MEM CPU CPU MEM CPU CPU
MEM CPU CPU MEM CPU CPU

vm01_C MEM IDLE CPU MEM IDLE CPU

6.2. Workload Classification and Cycle Recognition
The evaluation of the NB classifier was based on two benchmarks and

one scientific application. Benchmarks behavior is more constant during the
execution and, due to this characteristic, we can verify the NB classifier preci-
sion. On the other hand, the scientific application presents several oscillations
during its execution and enables the analysis of the classifier sensibility to
peaks of usage and workload changes.

A new subclass of four VM configurations, summarized in Table 4, was
used for this experiment. For each configuration, benchmarks (SPEC and
LAME) and an application (OpenModeller) were run ten times and during
the test load indexes were collected. VMs were installed in a hardware con-
sisting of a 2.66 MHz Intel Core 2 Quad processor, 2 GB of memory, and a
5400 RPM hard disk with nominal throughput of 3 GB/second. As software
configuration, the VMM used was Xen 4.1.3 and OpenSuse 12.1 running
Kernel 3.1.10 as host OS. All VM images use CentOS 5.9 running Kernel
2.6.18.

All results are summarized in Table 5, which also presents resource usage
average, the standard deviation between parenthesis and Naive Bayes classi-
fication in last column. Since classification is done during the benchmark and
application execution, it is expected to observe some classification oscillation,
which we then captured as primary and secondary workload.

In the SPEC characterization, running in configurations C1 and C2, with
only one processor available, NB classified as CPU intensive workload, with
memory or I/O fluctuations during the benchmark execution. Operations of
I/O occurred when SPEC wrote statistics in control files, such as FLOPS
and elapsed time. Memory classification was also expected, since the MCF
has a high memory usage profile.

For the LAME benchmark, the workload profile is CPU and I/O intensive

16



Table 4: Virtual Machine configurations.

Configuration
ID

Processor
(VCPUs)

Memory
(GB)

C1 1 1
C2 2

C3 2 1
C4 2

Table 5: Naive Bayes classification summary.

Average Resource Usage Naive Bayes
Characterization

Benchmark/Application Conf. ID CPU
(%)

MEM
(%) CPU (Prim/Sec) MEM (Prim/Sec)

SPEC

C1 96 (±18) 17 (±5) CPU+I/O CPU+MEM
C2 96 (±18) 9 (±2) CPU+I/O MEM
C3 49 (±12) 17 (±5) IO I/O+MEM
C4 49 (±11) 10 (±3) I/O+MEM I/O

LAME

C1 98 (±15) 7 (±1) CPU+I/O I/O+CPU
C2 98 (±15) 5 (±1) CPU+I/O I/O
C3 50 (±11) 7 (±1) I/O I/O
C4 51 (±11) 5 (±1) I/O I/O

OpenModeller

C1 100 (±5) 15 (±1) CPU+I/O I/O
C2 99 (±11) 8 (±1) CPU+I/O I/O
C3 51 (±11) 15 (±1) I/O+MEM I/O
C4 51 (±11) 9 (±1) I/O+MEM I/O

20

40

60

80

100

U
sa

ge
 (

%
) 

2000

4000

6000

8000

10000

IO
P

S

CPU MEM IOPS

CPU
MEM

IO 

Time

NB CPU Index

MEM Index

Figure 7: Characterization over time in configuration C3 running LAME.

usage. While an input file is being processed, LAME creates the MP3 file,
resulting in high I/O operations, with simultaneous read and write opera-
tions. Figure 7 presents the characterization over time for configuration C3
running the workload LAME. The top of the graph contains the VM resource
usage (CPU, memory, and I/O per second) and the bottom represents how
NB characterized the workload at a given moment.

17



OpenModeller has a high CPU usage, with some memory access and
I/O operations during the application initialization, when it reads the input
file and during the finalization, when the benchmark writes the output file.
Characterization for C1 and C2 configuration was CPU intensive, which is
expected in configurations with only one processor available. The processor
usage is more evident for all benchmarks/application for configurations C1
and C2 due to the availability of one processor. When adding a second
processor, NB identifies other workload profiles.

The NB’s asymptotic complexity is linear which, as previously discussed,
is necessary for any characterization strategy in cloud computing. Consider-
ing the discretization steps and the probability computation, the complexity
is Θ(n + k), where k is the number of indexes to be discretized and n is the
number of classes to be evaluated.

By using the NB characterization we identify when a VM can be moved
across physical hosts. Using NB characterization, we can identify the primary
workload and, instead of usual classification as CPU, MEM, I/O or IDLE, it
is classified as suitable to LM or non-suitable to LM (NLM).

6.3. Orchestration Analysis
This experiment evaluates the orchestration considering suitable moments

to trigger live migration. A live migration representation graph illustrates
the workload behavior over time and the moments when live consolidation
were submitted and the instant when live migration actually occurred.

6.3.1. Benchmark Experiments
Figure 8 presents the migration diagram for the four VMs running bench-

marks. Line in blue is the workload behavior over time, where valleys are
periods not suitable to trigger live migration (NLM) and peaks are periods
where the workloads are suitable to live migration (LM). The workload is
executed at the same time across all VMs. Dashed lines in red represent
consolidation instants. Lines in black are instants where ALMA actually
triggered live migration.

In order to compare the consolidation strategy under control of our archi-
tecture and without any surveillance we run two sets of experiments. In the
first set, VMs were actually consolidated in instants represented in dashed
red lines and we left the workload run to the end. During the second set, our
architecture was in place and according to the workload and the cycle analy-

18



0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
Time (sec)

LM

NLM

LM

NLM

LM

NLM

LM

NLM

vm03_A

vm02_C

vm02_A

vm01_C

Figure 8: Cycle accuracy identification diagram for benchmarks.

Table 6: Results with four VMs running benchmarks.

Metric Virtual
Machine

Traditional
Consolidation ALMA Reduction

(%)

Downtime
(sec)

vm03_A 20.06 20.44 -1.87
vm02_C 18.63 17.75 4.70
vm02_A 20.75 23.69 -14.16
vm01_C 19.25 18.94 1.62

Live Migration
Time
(sec)

vm03_A 28.81 12.00 58.35
vm02_C 87.56 42.31 51.68
vm02_A 43.81 11.13 74.61
vm01_C 54.31 26.81 50.63

Data
Traffic
(MB)

11,557.50 9,159.60 21.56

sis, it triggered or postponed live migration to a better instant (represented
by the black lines in the figure).

Ideally, when ALMA is in place, live migration (lines in black) should be
triggered during the peaks. In this experiment, our architecture was able to
migrate VMs at suitable workload moments, thus reducing data transferred
and live migration time (Table 6). The reduction in live migration time was
up to 74% (vm02_A) and data traffic reduction was up to 21%, representing a
reduction of about 2.3 GB. For the downtime metric, with 95% of confidence,
it is not possible to infer any improvements when using ALMA or not.

19



6.3.2. Application Experiments
We used two scientific applications, BRAMS and OpenModeller running

in vm02_C and vm03_A, respectively and a typical cloud workload, repre-
sented by Hadoop cluster, running in vm01_B, vm02_C and vm01_C. The
vm01_B VM was not moved from the physical host because it already was
in one of the physical hosts in which the workload was consolidated. That is
the reason why metrics of this VM were suppressed from presented results.

Figure 9 shows long suitable periods to live migration, such as the one
of the vm01_C. There are also workloads with long periods not suitable to
live migration, like vm03_A’s workload, and complex cycles as observed in
vm02_C. However, even in this scenario, ALMA was able to identify and
successfully postpone the live migration to a suitable moment.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Time (sec)

LM

NLM

LM

NLM

LM

NLM

LM

NLM

vm01_C

vm02_A

vm03_A

vm02_C

Consolidation Submission Effective Live Migration (ALMA)

Figure 9: Cycle accuracy identification diagram for applications.

The ALMA accuracy leads to the results presented in Table 7. Reduction
in live migration time (up to 67%) and amount of data transferred in net-
work (up to 62%) were significant. This result is due to the Hadoop cluster
behavior, which exchanges larges amount of data across the cluster nodes.
This application, particularly, was benefited by our architecture, as observed
in Table 7.

The application behavior is not known a priori (as opposed to the bench-
marks evaluation) and it is sensitive to the initial setup, such as command
line parameters and the input data. In both experiments, downtime did not
show improvements or deterioration. Statistically, with 95% of confidence, it
is not possible to determine if using ALMA or not can achieve performance
improvements.

The explanation for this is in the TCP behavior and how the hypervisor

20



Table 7: Results with four VMs running real applications.

Metric Virtual
Machine

Traditional
Consolidation ALMA Reduction

(%)

Downtime
(sec)

vm03_A (OpenModeller) 21.80 23.00 -5.50
vm02_C (BRAMS) 22.60 20.73 8.26
vm01_C (Hadoop) 19.07 22.33 -17.13
vm02_A (Hadoop) 12.67 17.20 -35.79

Live Migration
Time
(sec)

vm03_A (OpenModeller) 31.27 12.73 59.28
vm02_C (BRAMS) 12.93 10.60 18.04
vm01_C (Hadoop) 39.20 18.67 52.38
vm02_A (Hadoop) 38.20 12.40 67.54

Data
Traffic
(MB)

14,566.47 5,504.98 62.21

contacts the network devices that a given IP address is hosted by a given
physical host. Once a VM is moved across physical hosts, the hypervisor
needs to update the ARP table and, to this end, it sends an ICMP packet to
the network gateway. This process is not part of the migration algorithm; it is
an independent process. Moreover, downtime is sensitive to TCP. Our results
corroborate observations from Kikuchi and Matsumoto [10]: when a packet
does not arrive to the destiny, sender will try again when retransmission time
out (RTO) ends. The RTO is computed using round time trip (RTT) which
is, initially, equal to three seconds. Every time a retransmission is needed,
RTO value is doubled, increasing downtime.

6.4. Scalability
Scalability is a factor to be considered when dealing with cloud comput-

ing environments. Among the main features of such environment we can
cite resource elasticity, which enables the user to increase or decrease the
amount of available computational resources in response to a given demand
[16]. Also, users could add or remove VMs to their environment. These
features make cloud computing environments sensitive to solutions with low
scalability characteristic.

In this section we present an analysis of scalability of our solution. De-
spite the fact that previous experiments were run in a real private cloud,
performing a scalability test would require a large testbed, which we do not
have access to. Therefore, we used traces of the previous executed bench-
mark experiments to measure the overhead caused by ALMA, specifically
the Live Migration Control Module (LMCM) that performs the classification
and cycle analysis.

21



0 200 400 600 800 1000 1200

0

5

10

15

20

25

30

35

Virtual Machines Running

O
ve

rh
ea

d 
(%

)

Figure 10: Overhead caused by LMCM with data from up to thousand VMs.

The baseline used to infer the overhead is the Linux kernel compilation
with no other processes competing for resources. Next, traces were submitted
to the LMCM and the amount of extra time to perform the same compila-
tion was considered as the overhead. For each VM a new process was created
inside LMCM and we started the analysis with five VMs and gradually in-
creased to up to thousand VMs. Figure 10 shows the results from ten-run
experiments which highlight the fact that the overhead has a linear tendency
(line in red) that increases proportionally with the increase of VMs. The
overhead has increased, in average, 0.21% for every five VMs added. Ac-
cording to this result, and in this configuration testbed, LMCM saturation
would be achieved with 1,800 VMs running and submitting the live migration
request at the same time. We considered the saturation when the overhead
caused by LMCM reached 100% when compiling the linux kernel.

6.4.1. Data Gathering Overhead in Virtual Machines
The overhead imposed by index data gathering in VMs needs to be con-

sidered. As mentioned earlier, data indexes were collected by SNMP version
2. For each SNMP request, a script is executed, which returns a given value
according to the index requested. The overhead evaluation conducted in
this section is similar to the evaluation that has been conducted to infer the
LMCM overhead. We changed the VM configuration during the experiment
(processor and memory) and our main objective is to observe and quantify
the overhead caused by index data gathering according to the amount of
available computational resource.

The first experiment set was conducted using one VM with one processor

22



200 300 400 500 600 700 800 900 1000 1100 1200
0

0,25

0,5

0,75

1

1,25

1,5

1,75

Memory (MB)
 

(a)
 

O
ve

rh
ea

d 
(%

)

(a) One processor.

200 300 400 500 600 700 800 900 1000 1100 1200
0

0,25

0,5

0,75

1

1,25

1,5

1,75

Memory (MB)

O
ve

rh
ea

d 
(%

)

(b) Two processors.

Figure 11: Overhead in virtual machine.

and memory increased from 256 MB to 1,080 MB. Results are presented in
Figure 11 and indicate the overhead is about 0.75% and 0.5% for VMs with
one and two processors, respectively. The overhead is constant with small
fluctuation when varying the memory size. However, it is more sensitive to
the available processors.

7. Related Work

The main research efforts on live migration overhead for cloud environ-
ments are related to VM workload consolidation techniques [31, 32, 13]. The
motivation comes from the substantial cost reduction for service providers
that can be achieved using optimized consolidation techniques. Due to the
different aspects of existing efforts in this area, we split them into two cate-
gories. The first one is on live migration overhead as a factor to trigger live
migration. The efforts in second category present strategies to control the
live migration to avoid network congestion caused by massive migrations.

7.1. Live Migration with Overhead Constraints
As discussed earlier, consolidation deals with the selection and transfer of

VMs to a common physical host in order to reduce power consumption of the
source physical hosts. Since this is an NP-hard problem, several solutions
based on heuristics are available in literature. Resource reservation was also

23



considered as a mechanism to optimize migrations [32]. However, most of
solutions do not consider live migration overhead in infrastructure and VMs
collocated.

Xu et al. [13] present a strategy that takes into account the computational
cost of live migration in physical hosts (source and target) that are involved
in the migration process and in collocated VMs. This strategy, called iAware,
aims to avoid service level agreements violation, preventing that a given live
migration harms other VMs. Authors also present a strategy to model the
impact of live migration in collocated VMs, which is based on available phys-
ical resources and the amount of interruptions generated by VMs. Similar
to our work, iAware can be embedded into existing consolidation or load
balance strategies. Furthermore, both strategies aim to reduce performance
degradation caused by live migration.

Despite the features in common, iAware does not consider the VM work-
load as it only relies on resource usage of the physical host. Live migration
itself has a computational cost, therefore, postponing it to more suitable mo-
ment according to the VM workload can reduce overhead in physical host.

Verma et al. [33] present CosMig, which is a model for live migrations,
including time estimation to perform them. CosMig is based on processor
and memory usage parameters and determines the live migration impact
of a VM. Verma et al. also identified that: (1) an effective live migration
model must take into account application behavior, (2) only live migration
does not improve application performance; other factors can promote perfor-
mance improvement such as target host computing power and VM memory
fragmentation. The main similarity of CosMig and our work is the evalua-
tion of live migration in VM workload. Despite the fact that metrics used
to model live migration impact are different, both studies present models to
infer live migration impact in workload. A fundamental difference of is how
information about live migration impact is used by the proposed strategy. In
CosMig, the question asked is related to “if ” live migration of a given VM
will lead to performance gains or not. On the other hand, ALMA asks “when”
a live migration can be performed in order to avoid infrastructure damage
and, consequently, in application.

Finally, Stage and Setzer [34] introduce a live migration scheduling strat-
egy that classifies migrations according to the current workload and identifies
the minimal network resources to perform a migration. According to the au-
thors, a migration of a single VM can consume significant network bandwidth
during a long period (about 500 Mb/s for ten seconds to migrate a VM run-

24



ning a web server). The architecture presented by Stage and Setzer has
similarities with our work. Like in ALMA, there is a live migration scheduler
management, which decides when a VM can be migrated. However, their
architecture only observes network parameters (available bandwidth and a
live migration time constraint). Also, there is a workload classifier based on
the following attributes: (i) predictable: workload is considered predictable
when its behavior has a reliable prognosis for a given period; (ii) tendentious:
refers to fluctuations of a tendency; and (iii) cyclic: indicates how often a
pattern occurs in a given workload. The main difference from our work is
that, in Stage and Setzer work, live migration will take place according to
the network bandwidth consumption. From the estimative based on work-
load type and live migration duration threshold, which can be defined by
user or service provider, the architecture schedules live migrations in order
to meet live migration duration threshold. In addition, the characterization
of Stage and Setzer aims to group VMs with similar workload and performs
the live migration of these groups. In ALMA, the workload characterization
is the main criterion to define the suitable moment to trigger live migrations.

7.2. Live Migration Control Strategies
Beloglazov and Buyya [35] propose a dynamic strategy for VM consolida-

tion that considers suitable moments to perform live migrations. Their goal
is to minimize power consumption and maximize quality of service (QoS)
delivered by service provider which, according to the authors, composes the
trade-off between energy and performance. Their strategy identifies physical
hosts overloaded and live migrations intervals are defined in order to keep
QoS. In our work, ALMA can postpone a live migration according to the
VM workload and in Beloglazov and Buyya study, live migrations can be
postponed according to the physical host workload.

Ye et al. [36] present a framework, called VC-Migration, which controls
live migrations in a cluster composed of VMs. The VC-Migration has strate-
gies previously configured which decides how many VMs (granularity) will
be considered for migration in a given moment. The decision is based on cur-
rent computational resource usage of physical hosts. The strategies defined
by the framework are:

• Concurrent migration: this strategy performs the live migration of
several VMs, simultaneously, running in the same cluster;

25



• Mutual migration: strategy which is applied when physical hosts
involved in live migration process have VMs moved between each other;

• Homogeneous migration in multi-cluster: strategy applied when
several virtual clusters, with the same number of VMs, are being mi-
grated;

• Heterogeneous migration in multi-cluster: same strategy as ho-
mogeneous migration, but virtual clusters have different sizes.

The framework chooses the best strategy according to the number of
VMs being migrated and network bandwidth consumption. Authors argue
that application interdependence, which is common in a cluster environment,
reduces the infrastructure impact for network and applications.

8. Concluding Remarks

Live migration algorithms are known to be sensitive to memory usage.
However, during an application execution these algorithms can present peri-
ods of high memory usage or high processor usage. These periods can float
according to the day of the week, period of the year, or even with application
input. Therefore, the challenge is to identify workloads with cyclic pattern
and, once the cycle is identified, how to postpone live migrations to reduce
their overhead.

We proposed and evaluated a migration strategy and architecture using
a private cloud running benchmarks and real applications. The architecture
was able to reduce up to 74% and 62% in live migration time and data traffic,
respectively. The scalability analysis showed a host with 6 GB of memory is
capable of handling data of up to 1,800 VMs. Based on evaluation results,
our main finding is that using workload cycle recognition it is possible to
choose suitable moments to trigger live migration, thus leading to a significant
reduction in migration time and data traffic, confirming our hypothesis.

References

[1] D. Parkhill, The Challenge of the Computer Utility, no. p. 246 in The
Challenge of the Computer Utility, Addison-Wesley Publishing Com-
pany, 1966.

26



[2] S. Srikantaiah, A. Kansal, F. Zhao, Energy aware consolidation for cloud
computing, in: Proceedings of the Conference on Power Aware Comput-
ing and Systems, HotPower’08, USENIX Association, 2008.

[3] K. Nuaimi, N. Mohamed, M. Nuaimi, J. Al-Jaroodi, A survey of load
balancing in cloud computing: Challenges and algorithms, in: Proceed-
ings of the Second Symposium on Network Cloud Computing and Ap-
plications (NCCA’12), 2012.

[4] A. Roytman, A. Kansal, S. Govindan, J. Liu, S. Nath, PACMan: Per-
formance Aware Virtual Machine Consolidation, in: Proceedings of the
10th International Conference on Autonomic Computing (ICAC’13),
USENIX, 2013.

[5] A. Baruchi, E. Midorikawa, M. A. S. Netto, Improving virtual machine
live migration via application-level workload analysis, in: Proceedings of
the 10th International Conference on Network and Service Management
(CNSM’14), 2014.

[6] M. M. Theimer, K. A. Lantz, D. R. Cheriton, Preemptable remote exe-
cution facilities for the v-system, SIGOPS Oper. Syst. Rev. 19 (5) (1985)
2–12.

[7] M. R. Hines, K. Gopalan, Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning, in: Proceedings
of the ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE ’09), ACM, 2009.

[8] R. Birke, A. Podzimek, L. Chen, E. Smirni, State-of-the-practice in data
center virtualization: Toward a better understanding of VM usage, in:
Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’13), 2013.

[9] J. Smith, R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture
and Design), Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2005.

[10] S. Kikuchi, Y. Matsumoto, Impact of live migration on multi-tier appli-
cation performance in clouds, in: Proceedings of the IEEE 5th Interna-
tional Conference on Cloud Computing (CLOUD’12), 2012.

27



[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, A. Warfield, Xen and the art of virtualization, SIGOPS
Oper. Syst. Rev. 37 (5) (2003) 164–177.

[12] A. Strunk, Costs of virtual machine live migration: A survey, in:
Proceedings of the Eighth IEEE World Congress on Services (SER-
VICES’12), 2012.

[13] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, B. Li, iAware: Making Live Migration
of Virtual Machines Interference-Aware in the Cloud, IEEE Transactions
on Computers 99 (2013) 1.

[14] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, C. A. F. De Rose, Server
consolidation with migration control for virtualized data centers, Future
Generation Computer Systems 27 (8) (2011) 1027–1034.

[15] E. Feller, C. Morin, A. Esnault, A case for fully decentralized dynamic
VM consolidation in clouds, in: Proceedings of the IEEE 4th Interna-
tional Conference on Cloud Computing Technology and Science (Cloud-
Com’12), 2012.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwin-
ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above
the clouds: A berkeley view of cloud computing, Tech. rep., EECS De-
partment, University of California, Berkeley (Feb 2009).

[17] T. Garfinkel, M. Rosenblum, When virtual is harder than real: Security
challenges in virtual machine based computing environments, in: Pro-
ceedings of the 10th Conference on Hot Topics in Operating Systems
(HoTOS’05), USENIX Association, 2005.

[18] I. Ahmad, Easy and Efficient Disk I/O Workload Characterization in
VMware ESX Server, in: Proceedings of the 2007 IEEE 10th Interna-
tional Symposium on Workload Characterization (IISWC ’07), IEEE
Computer Society, 2007.

[19] J. Du, N. Sehrawat, W. Zwaenepoel, Performance profiling of virtual
machines, SIGPLAN Not. 46 (7) (2011) 3–14.

[20] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd
Edition, Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

28



[21] G. D. Bergland, Numerical analysis: A fast fourier transform algorithm
for real-valued series, Communications of the ACM 11 (10) (1968) 703–
710.

[22] M. Seki, Y. Koizumi, H. Ohsaki, K. Hato, J. Murayama, M. Imase,
Selfish virtual machine live migration causes network instability, in:
Proceedings of the 9th Asia-Pacific Symposium on Information and
Telecommunication Technologies (APSITT’12), 2012.

[23] A. Baruchi, E. Toshimi Midorikawa, L. Matsumoto Sato, Reducing vir-
tual machine live migration overhead via workload analysis, Latin Amer-
ica Transactions, IEEE (Revista IEEE America Latina) 13 (4) (2015)
1178–1186.

[24] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[25] S. R. Freitas, K. M. Longo, M. A. F. Silva Dias, R. Chatfield,
P. Silva Dias, P. Artaxo, M. O. Andreae, G. Grell, L. F. Rodrigues,
A. Fazenda, J. Panetta, The coupled aerosol and tracer transport model
to the brazilian developments on the regional atmospheric modeling
system (catt-brams), Atmospheric Chemistry and Physics 9 (8) (2009)
2843–2861.

[26] M. E. de Souza Muñoz, R. D. Giovanni, M. F. de Siqueira, T. Sutton,
P. Brewer, R. S. Pereira, D. A. L. Canhos, V. P. Canhos, openMod-
eller: a generic approach to species’ potential distribution modelling,
GeoInformatica 15 (1).

[27] S. Sair, M. Charney, Memory Behavior of the SPEC2000 Benchmark
Suite, Tech. rep. (2000).

[28] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, S. K. Weeratunga, The nas
parallel benchmarks - summary and preliminary results, in: Proceedings
of the ACM/IEEE Conference on High Performance Networking and
Computing (SC’91), ACM, 1991.

[29] V. Tarasov, S. Bhanage, E. Zadok, M. Seltzer, Benchmarking file sys-
tem benchmarking: It *is* rocket science, in: Proceedings of the 13th

29



USENIX Conference on Hot Topics in Operating Systems (HotOS’13),
USENIX Association, 2011.

[30] J. Johnston, A. Ferreira, Sum-difference stereo transform coding, in:
Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP’92), 1992.

[31] K. Ye, Z. Wu, C. Wang, B. B. Zhou, W. Si, X. Jiang, A. Y. Zomaya,
Profiling-based workload consolidation and migration in virtualized data
centers, IEEE Transactions on Parallel and Distributed Systems 26 (3)
(2015) 878–890.

[32] K. Ye, X. Jiang, D. Huang, J. Chen, B. Wang, Live migration of mul-
tiple virtual machines with resource reservation in cloud computing en-
vironments, in: Proceedings of the International Conference on Cloud
Computing (CLOUD11), IEEE, 2011.

[33] A. Verma, G. Kumar, R. Koller, A. Sen, CosMig: Modeling the Impact
of Reconfiguration in a Cloud, booktitle = Proceedings of the 2011 IEEE
19th Annual International Symposium on Modelling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS ’11),
IEEE Computer Society, 2011.

[34] A. Stage, T. Setzer, Network-aware migration control and scheduling of
differentiated virtual machine workloads, in: Proceedings of the ICSE
Workshop on Software Engineering Challenges of Cloud Computing
(CLOUD’09), 2009.

[35] A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic con-
solidation of virtual machines in cloud data centers under quality of
service constraints, IEEE Transactions on Parallel and Distributed Sys-
tems 24 (7) (2013) 1366–1379.

[36] K. Ye, X. Jiang, R. Ma, F. Yan, VC-Migration: Live Migration of Virtual
Clusters in the Cloud, in: Proceedings of the ACM/IEEE 13th Inter-
national Conference on Grid Computing (GRID’12), IEEE Computer
Society, 2012.

30


	1 Introduction
	2 Motivation and Problem Description
	3 Background
	3.1 Live Migration
	3.2 Pre-Copy
	3.3 Server Consolidation

	4 Workload Characterization and Cycle Recognition
	4.1 Naive Bayes Classifier
	4.2 Cyclic Analysis

	5 ALMA - Application Aware Live Migration Architecture
	5.1 Architecture Overview
	5.2 Algorithms

	6 Evaluation
	6.1 Experiment Setup
	6.2 Workload Classification and Cycle Recognition
	6.3 Orchestration Analysis
	6.3.1 Benchmark Experiments
	6.3.2 Application Experiments

	6.4 Scalability
	6.4.1 Data Gathering Overhead in Virtual Machines


	7 Related Work
	7.1 Live Migration with Overhead Constraints
	7.2 Live Migration Control Strategies

	8 Concluding Remarks

