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Abstract. Several scientific and industry applications require High Per-
formance Computing (HPC) resources to process and/or simulate com-
plex models. Not long ago, companies, research institutes, and univer-
sities used to acquire and maintain on-premise computer clusters; but,
recently, cloud computing has emerged as an alternative for a subset of
HPC applications. This poses a challenge to end-users, who have to de-
cide where to run their jobs: on local clusters or burst to a remote cloud
service provider. While current research on HPC cloud has focused on
comparing performance of on-premise clusters against cloud resources,
we build on top of existing efforts and introduce an advisory service to
help users make this decision considering the trade-offs of resource costs,
performance, and availability on hybrid clouds. We evaluated our ser-
vice using a real test-bed with a seismic processing application based on
Full Waveform Inversion; a technique used by geophysicists in the oil &
gas industry and earthquake prediction. We also discuss how the advisor
can be used for other applications and highlight the main lessons learned
constructing this service to reduce costs and turnaround times.

1 Introduction

Cloud computing was initially created to host web applications, but has since
become an alternative platform for several complex applications, like in Big Data
and High Performance Computing (HPC) areas. Typically, these applications
execute on on-premise clusters due to their heavy infrastructure requirements;
however, as virtualization and network technologies evolve, users can burst to
the cloud part or all their workloads to reduce costs and response time.

For cloud environments, one of the key issues is deciding which jobs should
be submitted to on-premise resources and which should be burst to the cloud.
This decision depends on several variables, such as job execution time on both
platforms (local and remote), financial costs, job queuing waiting time, provi-
sioning time in the cloud, among others. End-users need to consider all these
parameters to make proper decisions, which increase the complexity for (hybrid)
cloud deployments and limit cloud applicability for HPC-based applications, es-
pecially when Service Level Agreements (SLAs) are in place. Apart from the
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number of variables, end-users have to handle their volatility, which increases
the chance of wrong decisions, wasting money, or missing important deadlines.

Current work on HPC cloud has mainly focused on understanding the cost-
benefits of using cloud over on-premise clusters [8,16,17,20]; and there is still a
gap between understanding the cloud performance and costs, and helping users
make decisions on bursting their applications to the cloud. While applications
may have overhead in the cloud, mainly due to network performance, cloud is
more effective when we consider resource availability—users do not have to wait
long time periods in job queues of cluster management systems.

This paper introduces an advisory service to support users in deciding how
to distribute computational jobs between on-premise and cloud resources. In
summary, our main contributions are:
– An advisory service for bursting applications to the cloud, considering per-

formance and cost difference between cloud and on-premise resources, as well
as deadline, local job queue, and application characteristics (§ 2);

– A case study that shows the advisory service being used by a real world
application—a seismic processing technique from the oil & gas industry.
We employed a real test-bed with cloud and on-premise cluster resources,
and measured the impact of unreliable execution time predictions on cloud
bursting decisions (§ 3, §4).

2 Advisory Service and Policies

The advisory service considers a user deadline, incurred costs, the on-premise job
queue length (local), the provisioning time (cloud), the price ratio between local
and cloud for the resource allocation, the type of available hardware, and the
estimated execution time for both environments with different configurations. A
few of these variables, mainly related to performance and cloud resource setup
times, can be specified in SLAs placed between the parties, including users,
advisory service, and cloud provider.

The main input parameters to this advisor are the application profiles and
the cost models. The application profiler generates a comprehensive application
behavior considering infrastructure, financial costs, performance, and number
of required processors. Several approaches exist to produce application profiles
[3,10,18,22,24]—depending on the application and technique, different accuracy
levels can be reached.

The estimation of a cost model for a cloud infrastructure is not a difficult
task as it can be defined through simple simulations in the cloud provider. On
the other hand, the cost model of on-premise resources is challenging since each
owner operates financially different, and so we tackle this problem by assuming
that cost model of on-premise infrastructure is proportional to the cost model of
cloud infrastructure [14].

This section presents the architecture of the advisory service and two policies
for HPC job mapping in hybrid clouds. In Section 3, we instantiate the advisor
for a specific use case to show the practical applicability of the proposed service.
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Fig. 1. Advisory service architecture

2.1 Architecture

The design of the advisory service is intended to be as generic as possible, relying
on domain and application specific modules discussed in Section 3. Figure 1
presents the advisory service architecture containing three groups of modules:
generic advisory service modules, application, and environment specific profilers.

Solver receives requirements and constraints to be fulfilled (e.g., cost, exe-
cution time, budget, deadline). It calls the Execution Cost Predictor, which
estimates the cost of the executions based on their application profile, on the
environment cost model, and optionally on execution logs. The application pro-
file describes the relation between computational resources and execution time,
which is important to estimate the total execution cost based on a particular
model. Whenever users run applications, details of their executions are stored
in a database, similar to the approach described by Binotto et al. [2]. These logs
refine future comparisons as they provide historical data that can be analyzed
to improve accuracy of the estimations.

Particularly, the Solver module can use the results of the Execution Cost

Predictor module to find the best configuration given user’s variables and con-
straints. It first classifies all configurations in two categories: those that fit and
those that do not fit the constraints. The earlier are sorted based on the optimiza-
tion criterion, i.e., time or budget. The solver relies on placement policies—two
examples of policies are described in the following section as they are generic
enough to be used by several applications and environments.

Application Profiler characterizes an application considering computa-
tional resources (e.g., processors, memory, network, I/O) and execution time.
In order to compare cloud and on-premise cluster, users should generate appli-
cation profiles for both environments, which are captured by the Environment

Profiler containing the environment Cost Model (Section 3.2).



The proposed advisory service currently supports two policies: (i) the max-
imum budget for running jobs, when users are more concerned about costs; (ii)
the maximum execution time, when users must meet a deadline to deliver results,
and budget is a secondary concern.

2.2 Budget-aware policy

For the Budget-aware policy, the user provides a budget restriction and the
policy finds the best placement for the job, considering queue length for local
cluster, a time for setup and provisioning in the cloud environment, and the
price ratio between local and cluster. Here are the steps of this policy:

(I) Get the execution time for given budget (inverse of Eq. 6, Section 3.3);
(II) Find the number of processors to be allocated in a cloud infrastruc-

ture to meet the execution time requirement (Eq. 1, Section 3.1);
(III) Define a vector with the processors per node distribution based on the

available on-premise hardware and the cloud provider. In our experiments,
we used the following configuration:
Pcloud = {1, 2, 4, 8, 12, 16}, Plocal = {1, 2, 3, ..., 200}.
Thus, if the advisor computes a number of processors NProcscloud = 45,
the distribution will be: ProcPerNodecloud = [16, 16, 13]. Note that the
last node would have 13 processors, but there may be no such configuration
available in the cloud provider. It would be possible to define a distribution
of 45 processors in the following way: ProcPerNodecloud = [16, 16, 12, 1],
but it would require an additional processor, which would increase the
costs. Instead, the distribution is defined as described in the next step.

(IV) Adjust the number of processors based on the available configuration:
New ProcPerNodecloud = [16, 16, 12].
The last node was downsized to 12 because this is the next available value
below 16 in Pcloud. Since the user is looking for a turnaround time given
the budget restrictions (budget-aware policy), the advisor must reduce the
number processors trying to meet that budget baseline.

(V) Compute the new execution time and turnaround time from number
of processors, queue length, and setup time. The execution time is esti-
mated from equations that define the Application Profile (Section 3.1).

(VI) Compute the costs for the estimated infrastructure using the Cost Model
(Section 3.2).

At the end, the advisor provides an achievable deadline based on budget restric-
tions. The decision would be to place the job in an infrastructure that delivers
shorter turnaround time if they are still within the restricted budget.

2.3 Deadline-aware policy

This policy determines the required number of processors that meets the deadline
in cloud and local environments. The policy steps are:



(I) Get execution time for a deadline, setup time and queue length:
t = T − Q, where t is the execution time, T is the total time (deadline),
and Q is the queue length (local) or the setup time (cloud).

(II) Find the number of processors that can fulfill the execution time re-
quirement (Eq. 1 from the Application profile);

(III) Define a vector with the processors per node distribution based on the
available hardware (local) and the offers from the cloud provider. In our
experiments, we used the following configuration:
procs cloud = {1, 2, 4, 8, 12, 16}, procs local = {1, 2, 3, ..., 200}
Thus, if the advisor computes a number of processors NProcscloud = 41,
the distribution will be:
ProcPerNode cloud = [16, 16, 9]. Note that, again, the last node would
have 9 processors, but there is no such configuration in the cloud provider.
It would be possible to use the following distribution: ProcPerNode cloud =
[16, 16, 8, 1], but it would require an additional processor, which could in-
crease the network communication and possibly the execution time. In-
stead, we define the distribution of processors as described in the next step.

(IV) Adjust the number of processors based on the available configuration:
New ProcPerNodecloud = [16, 16, 12], where the last node was upscaled to
12 since this is the next available value greater than 9 in Pcloud. The same
adjustment is done for the procs per node in the local HPC. Since users
are looking for resources that meet their time constraints, we increase the
number of processors in order to satisfy the restricted execution time.

(V) Compute the new number of processors according the previous adjust-
ments (new NProcs = 16 + 16 + 12 = 44);

(VI) Compute the new Execution Time and Turnaround Time from the
adjusted number of processors (Eq. 1), the queue length, and setup time;

(VII) Compute the costs associated with the defined infrastructure (Eq. 3).

At the end of this policy, the advisor provides cost values for local and cloud
infrastructures, trying to meet the deadline. If both environments can deliver
the restricted deadline, the decision would be based on the Total Costs.

3 Application Case Study in Oil & Gas Industry

In this section, we present a case study based on Full Waveform Inversion (FWI)
application [21]. To instantiate the advisory service for this application, we cre-
ated the application profile and cost model components for SoftLayer cloud
provider and an on-premise cluster. Rather than showing an overview of the
advisor for several applications, we focused on a detailed explanation of a use
case placed into practice. The FWI application contains components of several
HPC applications such as communication among multiple processes, solvers for
linear systems, matrix operations, among others. There are several ways to cre-
ate the application profile, which can be implemented and plugged-in into the
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Fig. 2. FWI data collection and remote visualization

advisory service [3,10,18,22,24]. The more complex the application behavior, the
less accuracy and more time will be required to create the profile. We evaluate
the impact of accuracy in Section 4.3.

FWI is a numerically challenging technique based on full wavefield modeling
of a geological domain that extracts relevant quantitative information from seis-
mograms. When dealing with realistic physics-based elastic partial differential
equations formulation and accurate discretization techniques, such as high order
Spectral Element Method, the forward modeling becomes particularly challeng-
ing from the computational point of view. Millions of shots in different positions
are calculated over the same data domain and each shot solution evolves along
time steps. At the end, the generated images are composed to produce the final
outcome (Figure 2).

3.1 Application Profile

We considered the FWI application, which is based on a multi-resolution, Partial
Differential Equation solver to run our experiments. We assume that the profile of
such applications can be represented by a power-law function due to its inherent
scale-invariance characteristics. For instance, similar applications can be scaled
to a finer or coarser grid resolution and will behave similarly, by simple tuning,
the coefficients of the power-law function [11, 12], for arbitrary constants a and
b. From experiments, we observed that the Application Profile function can be
modeled as:

t = a P b (1)

where t is the execution time, P is the number of processors, and the coefficients
a and b are empirically determined. More details on these coefficients can be
found in Section 4.1, Figure 3(b), and Equation 8. In addition to Equation 1, we
need to determine the number of processors for a time restriction t as the input
parameter. This is solved by inverting Equation 1.



3.2 Environment Profile: Cost Model

In order to develop a cost model, we collected prices charged by cloud providers.
We used the SoftLayer1 cloud infrastructure—similar findings from our experi-
ments could be obtained using other cloud providers as they mostly rely on sim-
ilar prices and charging models (hourly-based). We consider here homogeneous
resources and leave heterogeneity [5] as future work. Table 1 shows SoftLayer
fees in US Dollars for different memory size configurations.

Table 1. Costs/hour over number of cores and three memory configurations

1GB/proc 2GB/proc 4GB/proc

N Cores Cost($/hour) Cost($/hour) Cost($/hour)

1 0.040 0.059 0.098

2 0.079 0.118 0.183

4 0.159 0.224 0.334

8 0.306 0.416 0.591

12 0.444 0.674 0.806

16 0.581 0.756 1.019
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Fig. 3. Cost Model: (a) Listed price per node (cloud only); (b) Workload profile; (c)
prices for 4GB RAM/proc and price ratio k=1

We observed that the hourly-rate for provisioning nodes is a linear relation-
ship to the number of processors P . These functions are shown in Figure 3(a)
and were fitted from real prices offered in SoftLayer (Table 1). The ratio “price
per hour” can be described by a general linear equation (Ch = αP + β). For
simplification purposes, we assume the offset coefficient (β) can be neglected
and the “price per hour” is directly proportional to the number of processors.
We also claim that Ch can be written as dC/dT , by considering a continuous
execution time:

dC

dt
= αP ⇒ dC = (αP )dt (2)

where dC/dt is the hourly-rate for nodes and α is a linear coefficient determined
empirically.

1 SoftLayer website: http://www.softlayer.com/



In order to quantify the total cost for a given turnaround time, we can inte-
grate Equation 2 over time (remembering that the number of processors P does
not change with time):

C =

∫ T

0

(αP )dt ⇒ C = T (αP ) (3)

where T is the turnaround time and C is the total cost for a given number
of processors P and turnaround time T .

The integration constant is zero, since C(0) = 0, meaning there is no costs
when execution time is also zero.

It is not a trivial task to model costs of on-premise HPC clusters [14], as
it is dependent on acquisition time, depreciation, occupancy, and maintenance
costs. Therefore, in order to simplify the on-premise cost model, we assume it is
proportional to cloud costs [8, 14]:(

dC

dt

)
local

= K ∗
(
dC

dt

)
cloud

(4)

where (dC/dt)local and (dC/dt)cloud are hourly prices for local and cloud in-
frastructures respectively, and K is the local-cloud price ratio. All remaining
equations can be derived from Equation 4 in a similar way done for cloud costs
(Equations 2 to 3)

C = T (K αP ) (5)

3.3 Integrating application profile and costs model

In order to find the total costs for a given turnaround time, we integrated this
function over time. From Equations 2 and 1, the following can be written:

dC =

[
α

(
t

a

)( 1
b )
]
dt ⇒

∫
dC =

∫ T

0

[
α

(
t

a

)( 1
b )
]
dt

We have C, which is the total cost for a given time T , a cost model (from
α), and the application profile (from a and b):

C = aα

(Ta )(1+ 1
b )

1 + 1
b

 (6)

Equation 6 defines the coupled “Profile-Cost model”, and are used in the
“Budget-aware policy”. Figure 3(c) shows the costs function C(T ) for a load
(execution time X number of processors).

The inverse function C−1 = T (C) is also useful when we have a budget
restriction and want to look for a total execution time.



4 Evaluation

The goals of the evaluation are to understand: (i) the financial and time saving
benefits of the advisor (Section 4.2); and (ii) how the advisor is dependent from
the accuracy of the application profile (Section 4.3). We compared the advisor
against four policies:

– Always-local: chooses to always submit jobs to the on-premise environment—
it represents users who do not want or cannot move their jobs to the cloud.
We used this policy as baseline for comparison because it still represents the
most conservative and traditional behavior of HPC users;

– Always-cloud: chooses to always submit jobs to the cloud—it represents
users who do not have access to an on-premise cluster or are willing to test
the cloud to avoid acquiring a new cluster in the future;

– Random: randomly decides between cloud and local environments—it is an
attempt to represent users who do not have any supporting mechanism or
intuition to know where to run their jobs;

– Worst-case: chooses the opposite environment provided by the advisor—
it represents hypothetical users who make extremely wrong decisions. This
helps us understand how much a user can loose with such decisions.

This is not an exhaustive list of policies that we could use for comparison. It
represents a few extreme cases to understand how good or bad resource alloca-
tion decisions can impact costs and turnaround times if no advising mechanisms
are provided to the user. Several other policies [4, 19] could be leveraged or fur-
ther developed in comparison to those used by the advisor. Finding the optimal
resource allocation is out of the scope of this paper.

To compare these decision policies with the advisor, we executed both budget-
aware and deadline-aware policies varying the following input data, which can
be part of SLAs: deadline ranges from 1 to 100 hours; budget ranges from 10 to
100 USD; queue size time ranges from 1% to 50% of the deadline; setup time
ranges from 1% to 50% of the deadline; price ratio between cloud and local
environments, with the price of cloud environment ranging from 70% to 340%
the price of the local environment; total of 28,000 executions per policy.

All ranges have been defined to cover a wide spectrum of possible inputs.
The ranges for the budget, deadline, and setup time are based on our experience
with the FWI application. The price ratio is based on HPC cloud literature [8].
The FWI case study profile was generated using a single input data set, which
described the size of the domain, the precision of the output image, and the
varying number of processors from 10 to 40.

The advisor computes the costs and turnaround time for both environments
for each set of input variables, thus executing both deadline-aware and budget-
aware policies. For instance, if the deadline-aware policy is executed, it computes
the costs for both environments, say Costcloud and Costlocal, in order to choose
the cheapest one. For each result, the advisor calculates the relative difference
between the costs of both environments in the following way:



min(Costcloud, Costlocal)− Costlocal
Costlocal

(7)

where Costlocal > 0. When the budget-aware policy is executed, the advisor
calculates the relative difference of the turnaround time in a similar manner.
The results of the other decision policies used for comparison are also relative
to the always-local decision policy.

4.1 Environment Setup

We selected two representative environments, described in Table 2, to compare
the target application on cloud and on-premise environments.

Table 2. Cluster and SoftLayer details

Cluster SoftLayer

processor (GHz) 2.80 2.60

cores per processor 10 4

cache size (KB) 25600 20480

total memory (MB) 132128 65712

network ethernet/infiniband ethernet

operating system RHEL CentOS

The FWI application contains a set of parameters such as number of degrees
of freedom, polynomial order, data domain, among others, and it is a highly CPU
and memory intensive. Details of the application parameters are not relevant to
the experiments presented here (they are addressed elsewhere [21]).

Application profiles provide information about the behavior of the application
in terms of metrics, such as total elapsed time, number of cores, memory, nodes,
network, and costs. The selection of these metrics depends on the constraints
and variables that end-users want to optimize. For instance, Figure 3(b) shows
how the total elapsed time for executing application changes as the number of
processors increases in the two distinct environments.

We derived the power-law scaling function, as described in Section 3.1, from
the experiments (Equation 1). The coefficients a and b were computed through
non-linear least squares curve fitting. Thus, we have:

tlocal = 1013.50P−1.58
local and tcloud = 7004.86P−2.06

cloud (8)

4.2 Results: Costs and Time Savings

The results of the comparison are presented in Figures 4 and 5. The y axis of
Figure 4 represents the relative cost as calculated by Equation 7, while the y
axis of Figure 5 describes the relative turnaround time. In both figures, y axes
are in a symmetrical log scale and the x axes depict the price ratio. The higher
the price ratio, the higher the costs for local environment compared to cloud. In



both figures, results were stabilized outside the plotted ratios, and therefore we
omitted them.

Figure 4 shows the results for the deadline-aware policy. When local envi-
ronment is cheaper (K < 1) and even 80% (K=1.8) more expensive than cloud
environment, it delivers the cheapest cost most of the time. For instance, when
the price ratio is 1.8, local environment provides the cheapest cost around 71%
of the instances. The reason for this is that local environment showed the best
computing performance for executing the target application, as depicted in Fig-
ure 3. Thus, even when the local environment is around 80% more expensive than
cloud, its performance counterbalances its cost. When the price ratio reaches 2.2,
the local environment is surpassed by the cloud in terms of cost, i.e., cloud is
the cheapest environment around 56% of the time and this percentage becomes
greater as the price ratio grows, as expected.

Figure 5 depicts the results for the budget-aware policy. Similarly to the
deadline-aware policy, the always-cloud policy is comparable to worst-case and
advisor is comparable to always-local when the local price is equal to or below
the cloud price. However, for higher price ratios, always-cloud policy surpasses
always-local faster than deadline-aware policy. The turning point occurs when
price ratio is around 1.0: always-local is on average 30% faster than always-
cloud, but the median is -0.12; that is, always-cloud is half the time at least 12%
faster than always-local. Although the local environment has better computing
performance results over cloud, when they have a similar price (i.e., price ratio
around 1.0), the decision on where to run for a given budget is not obvious
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due to the other input parameters (queue length and setup time) affecting the
turnaround time.

When the advisor calculates an execution time to meet the budget, the cou-
pled model yields a solution that is near-optimal in terms of execution time.
We observed that searching for the optimal execution time is not worthwhile
since the adjustments over the infrastructure to meet the available configura-
tions overpass intermediate values found in the optimal solution. For instance,
an estimated number of processors NProcs = 9.5 must be adjusted to 10 or 9,
according to the policies.

Both figures show that the advisor supports the selection of the environment
that best suits users’ needs. The lack of such supporting tool might cause unnec-
essary costs or waste of time as it is illustrated by the worst-case decision policy.
Furthermore, some of the input variables (e.g., queue size time) can change very
frequently thus making impossible to manually calculate the best environment
to run an application.

4.3 Results: Accuracy of the Application Profile

We defined the range of inaccuracies from −90% (i.e., −0.9) error to 100% (i.e.,
1.0) error, aiming to cover a wide spectrum of such profiles. For each set of input
data, the application profile specifies the amount of infrastructure necessary to
meet deadline or budget constraints depending on the policy. Let us say this
infrastructure has 100 cores disregarding the policy; after injecting the error
within the aforementioned range, it will have from 10 (i.e., 100 ∗ (1.0− 0.9)) to
200 cores (i.e., 100 ∗ (1.0 + 1.0)).

For each estimation of the advisor, the input data also varied in the same
way that was described in previous evaluation (Section 4.2), which means that
each policy has been executed 28,000 times for each inaccurate profile. After
the execution, the advisor provided either the same decision that was computed
using the accurate profile or a different one. Even if the decision was the same,
it is usually based on slightly different results. Thus, we measured whether the
decision is the same or not, and the relative difference between results using an
inaccurate and the accurate profile. These relative differences, when executing
the deadline-aware policy, were calculated as follows:

CostInaccurate − CostAccurate

CostAccurate
(9)

where CostInaccurate and CostAccurate are the costs measured using inaccurate
and accurate profiles, respectively. The relative differences were calculated sim-
ilarly when executing the budget-aware policy. Table 3 shows a comparison of
the results provided by the advisor using inaccurate and accurate profiles. The
first column compares the decision of the advisor using both profiles: = means
same decision and 6= otherwise. For each policy, this table shows the average of
the relative differences (avg), their standard deviation (std) and total number
of decisions (size) for each inaccurate profile. So, for each inaccurate profile, the
sum of equal and different decisions is 28,000.



Table 3. Results from the advisor using inaccurate and accurate profiles

decision error deadline-aware budget-aware

avg std size avg std size

=
-0.9

-0.8 0.3 17293 (62%) -0.2 0.7 13068 (47%)

6= -1.0 0.0 10707 (38%) -0.4 0.5 14932 (53%)

=
-0.5

-0.4 0.3 25356 (91%) 0.3 0.6 23236 (83%)

6= -0.6 0.0 2644 (9%) 0.0 0.4 4764 (17%)

=
-0.1

-0.1 0.1 26004 (93%) 0.1 0.4 27272 (96%)

6= 0.1 0.3 1996 (7%) 0.2 0.3 728 (4%)

=
0.1

0.1 0.1 27115 (97%) 0.1 0.1 27829 (99%)

6= 0.1 0.1 885 (3%) 0.1 0.0 171 (1%)

=
0.5

0.4 0.4 26597 (95%) 0.1 0.3 26685 (95%)

6= 0.8 0.2 1403 (5%) 0.2 0.2 1315 (5%)

=
0.9

0.9 0.8 25982 (93%) 0.0 0.3 25807 (92%)

6= 1.5 0.4 2018 (7%) 0.3 0.3 2193 (8%)

As the error gets close to zero, the percentage of same decisions increases.
Even when the error is 0.9, the advisor computed the same decision for deadline-
aware policy around 93% of the times and for budget-aware policy around 92% of
times. The number of different decisions for the budget-aware is greater than the
number of same decisions (53% against 47%, respectively) only when the error is
-0.9. For this error, the advisor proposed the same decision for the deadline-aware
policy around 62% of the time.

For most of the inaccuracy ranges, the number of equal decisions is far greater
than the number of different decisions. That is, even if the application profile is
inaccurate, it has a minor decision impact. Thus, the advisor provides evidence
that it is resilient to inaccuracies in the application profile. One reason for this
is the wide spectrum of data that has been exercised. In some situations, the
difference between choosing cloud or local is so great that the inaccuracy has
little to no impact on job(s) placement decision.

These results also show that as inaccuracy gets close to zero, the number of
correct decisions increases, as expected. When the inaccuracy is close to zero,
there is a higher chance that the infrastructure calculated by the application
profile is not relevant for the final result. For example, an inaccuracy of -10% of
100 cores would calculate 90 cores; instead of running in 1 hour and 30 minutes,
the job(s) would run 1 hour and 50 minutes. For a cloud environment that rents
VMs per hour, the result would be 2 hours for both options.

When the error is -0.9, the number of different decisions achieved its peak
for both policies. On the other hand, when the error is 0.9, the number of dif-
ferent decisions is small compared to the number of equal decisions. Despite
the absolute values of both errors being the same, the number of different de-
cisions provided by the advisor using these inaccurate profiles is distinct. The
results provided by the advisor are based on application profile and the inte-
grated profile-cost model, which are not linear, as depicted in Figures 3(b) and
(c). This explains why these inaccurate profiles provided distinct rates.



5 Related Work

Scientific and engineering applications usually require HPC platforms and are
currently being tested on modern cloud platforms that are now starting to incor-
porate HPC features. For instance, UberCloud experiment reports [6,7] contain
a set of use cases and challenges when moving HPC applications to the cloud.
These challenges include data transfer from and to the cloud, unpredictable costs
when using cloud resources which depend on workload demands and algorithm
complexity, lack of easy and intuitive self-service administration, long waiting
times to start-up VMs (at unacceptable level for some end-users), among others.

Ostermann et al. [17] evaluated whether performance of cloud environments
are sufficient for scientific computing. Their results showed that cloud environ-
ments were insufficient for scientific computing at the time of their publication.
At the same time, Napper and Bientinesi [16] used Linpack benchmarks to eval-
uate whether cloud could potentially be included in the top 500 list of supercom-
puting. Their results showed that the performance of single cloud nodes was as
good as nodes in HPC systems, however, memory and network were not sufficient
to scale the application. Vecchiola et al. [20] also evaluated the use of clouds for
scientific applications. They concluded that clouds are effective for conducting
scientific experiments, but the trade-off between costs and performance has to
be evaluated case by case.

Following a new phase of HPC cloud studies, Mateescu et al. [15] evaluated
a set of benchmarks and complex HPC applications on a range of platforms,
both in-house and in the cloud. The studies showed cloud effectiveness for such
applications mainly in the case of complementing supercomputers. Gupta and
Milojicic [9] highlighted that cloud can be suitable for some HPC applications,
but not all. The same group of authors [8] performed a set of experiments using
benchmarks and complex HPC applications on various platforms, including su-
percomputers and clouds, to answer the question “why and who should choose
cloud for HPC, for what applications, and how should cloud be used for HPC?”.

More recently, Belgacem and Chopard [1] evaluated a computational fluid
dynamics application over a heterogeneous environment of a cluster and cloud.
They ratified a previous work [23] that demonstrated the potential of clouds to
fluid dynamics. Mantripragada et al. [13] proposed a method to use a hybrid
approach using a local cluster plus the cloud to dynamically boost comput-
ing intensive applications dealing with data partitioning respecting performance
deadlines. The results using a seismic application showed that the approach is
feasible in the case of a seamless connection between both environments despite
of synchronization concerns. Outside the HPC efforts, Unuvar et al. [19] intro-
duced a hybrid cloud placement algorithm, which focus on application structure
to allocate multiple VMs.

Although these findings do not propose advisory tools, their empirical stud-
ies open an opportunity for proposing new tools focusing on a heterogeneous
approach over local and cloud, like ours.



6 Conclusions

We introduced an advisory service based on two policies to help users decide
where to run their HPC jobs: on-premise versus cloud. It considers the appli-
cation profile, job waiting queue, costs, budget, and deadline constraints. We
used a real testbed and seismic application in the area of oil & gas industry to
perform a comprehensive set of experiments.

The advisory service is composed of modules that can be extended/plugged-in
to have more refined Application Profiles and to suit other applications. Further
investigations will be required to collect data from a wide range of applications.
The main lessons from our study are: (i) in HPC cloud, apart from resource
performance, it is important to consider the time a user has to wait in a job queue
of the on-premise environment compared to the overhead of cloud resources—
more relevant is the total turnaround time, as also pointed by Marathe et al. [14];
(ii) it is possible to consider an advisory service for HPC hybrid clouds even
without having highly precise application/job profiles—however, very inaccurate
profiles may generate negative impact on costs and turnaround delays; (iii) the
higher the cost differences between cloud and on-premise resources the higher the
savings brought by an advisory service for resource selection on hybrid clouds.
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