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Abstract—Auto-scaling is a key feature in clouds responsible
for adjusting the number of available resources to meet service
demand. Resource pool modifications are necessary to keep
performance indicators, such as utilisation level, between user-
defined lower and upper bounds. Auto-scaling strategies that are
not properly configured according to user workload character-
istics may lead to unacceptable QoS and large resource waste.
As a consequence, there is a need for a deeper understanding
of auto-scaling strategies and how they should be configured
to minimise these problems. In this work, we evaluate various
auto-scaling strategies using log traces from a production Google
data centre cluster comprising millions of jobs. Using utilisation
level as performance indicator, our results show that proper
management of auto-scaling parameters reduces the difference
between the target utilisation interval and the actual values—we
define such difference as Auto-scaling Demand Index. We also
present a set of lessons from this study to help cloud providers
build recommender systems for auto-scaling operations.

I. INTRODUCTION

Cloud infrastructure is typically elastic, i.e. the number of
allocated resources can be modified dynamically according
to users’ needs. Typically, users define an upper bound U
and a lower bound L on a target performance metric (e.g.,
utilisation level, throughput, average response time) to trigger
the activation and deactivation, respectively, of a certain num-
ber s of resources (step size). Unfortunately, users typically
set U , L, and s in an ad-hoc manner, and, as a consequence,
performance indicators of cloud solutions are frequently out
of their target intervals. In the case of utilisation level, these
deviations lead to unsatisfactory QoS and/or use of resources,
so they are clearly undesired and should be minimised.

In addition to the challenges involved in the choice of
parameters U , L, and s, one must also be careful when se-
lecting an auto-scaling triggering strategy. Several mechanisms
addressing this issue rely on forecasts of future resource usage
in order to allocate and release resources pro-actively, but there
are challenges to these approaches, such as:

• Inherent difficulties in load estimations—especially for
environments with heterogeneous workloads;

• The relationship between the monitoring frequency and
the time required by the cloud infrastructure to allocate
and deallocate resources has a strong impact on the
performance of reactive and predictive solutions.

In this article, we discuss and analyse auto-scaling solutions,

which vary according to the chosen strategies for trigger-
ing auto-scaling operations and for setting step sizes. We
performed computational experiments on real-world data to
show the impact of these choices on infrastructure utilisation.
In particular, we evaluate the differences between the target
interval and the actual measured values and investigate the
root causes of undesired deviations. The key contributions of
this paper are:

• Auto-scaling Demand Index (ADI): a new performance
metric for the evaluation of auto-scaling strategies that
penalises differences between actual and desired resource
utilisation levels (§ II);

• Adaptive: a strategy for defining adequate step sizes s
in auto-scaling operations based on L, U , and the current
system utilisation level (§ III);

• An extensive performance study that compares several
auto-scaling strategies based on the ADI metric. The
study utilises trace logs from a production data centre
cluster from Google comprising millions of jobs and
considers workloads with various characteristics (§ IV).

II. PROBLEM DESCRIPTION

Cloud users allocate a pool of computing resources to
provide services with a certain QoS while respecting bud-
get restrictions. There is typically a maximum number m
of resources they are willing to allocate, but the current
number of active elements is ideally kept to a minimum.
One performance indicator that takes these two conflicting
objectives into account is resource utilisation level, which is
the ratio between what is currently in use and what is available
from the resource pool. Users typically employ rule-based
systems that periodically monitor utilisation and trigger auto-
scaling operations whenever it is out of a given target interval.
Namely, if utilisation goes above an upper bound U , additional
resources are allocated to improve QoS, and if it goes below
a lower bound L, the resource pool is shrunk to reduce costs.

The aim of this work is to address the following question:
“how to keep resource utilisation inside a target interval”.
To answer this question, we introduce in this article a metric
called Auto-scaling Demand Index (ADI), which is the
sum of all distances computed between each utilisation level
reported by the system and the target utilisation interval set by
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Fig. 1. Auto-scaling Demand Index (ADI) metric. The demand increases
either because the actual utilisation is above the upper bound or because the
actual utilisation is below the lower bound.

the user. These distances are represented by the thin arrows
depicted in Figure 1. ADI is convenient because it employs
the same metric to evaluate (or, more precisely, penalise) both
unacceptable QoS and resource underutilisation. If the utilisa-
tion is above the target interval, QoS is unsatisfactory, since
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Fig. 2. Problem with slow convergence to the target utilisation interval.
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Fig. 3. Problem when utilisation crosses target interval.

the infrastructure is not enough to meet workload demand. If
the utilisation is below the target one, a penalisation incurs
due to resource underutilisation.

It is clear that auto-scaling operations are unavoidable if
system load is heterogeneous over time, so we are interested
in reducing the gap between the actual utilisation and the target
interval. Moreover, we remark that the problem is not trivial
in situations where workload forecasts are not accurate, since
prediction-based strategies will not be able to achieve optimal
solutions.

There are two main challenges to execute auto-scaling
operations in a way to minimise ADI: the decision on when
to trigger auto-scaling operations and on the step size used to
expand or shrink the resource pool. The problems related to
step size are more subtle, and therefore we highlight some of
them in Figures 2 and 3. Figure 2(a) shows a case in which a
relatively small step size was adopted and, therefore, several
auto-scaling operations were needed for the system utilisation
to reach the target interval. If a large step size is used, as
shown in Figure 2(b), a single auto-scaling operation may be
sufficient, thus reducing ADI drastically. Figure 3(a) shows a
scenario in which auto-scaling with a large step size makes the
actual utilisation moves from slightly above the target interval



to way below it. If a small step size were used, the utilisation
would move to the target interval, as illustrated in Figure 3(b).

The problems described in the above-mentioned scenarios
can be minimised if decision-support systems explore analyt-
ical relations involving parameters U , L, s, and m in order to
have their values adjusted (in particular, the value of s) and
to support users that have to set up these values manually.
To address these problems, we performed experiments with
various workloads and analysed the performance of several
auto-scaling strategies according to ADI.

III. MODELLING

A. Formal Description

We consider a discrete-time state-space model, so all the
time-related values are integer numbers belonging to a set T ⊆
N. From now on, we refer to each t in T as a time-step.

We are given a set U of users, a set J of incoming jobs,
and a set M of machines that can be provisioned and used to
service these jobs. The set of jobs being executed at time-step t
is denoted by Jt.

Machines are pairwise indistinguishable, i.e., they all pro-
vide the same amount of resources (e.g., number of CPU cores,
frequency, memory). For each time-step t,M =Ma,t∪Mn,t,
whereMa,t andMn,t contain the machines that are currently
active and inactive, respectively (it is therefore clear that
Ma,t ∩Mn,t 6= ∅). Finally, m = |M| and mt = |Ma,t|.

Each job j requires an amount of resources wj ∈ R+.
Since wj is not necessarily integer, jobs may consume only a
fraction of the resources that a single machine may provide.
Moreover, wj may be larger than 1, which indicates that
job j needs more than one machine to have its requirements
satisfied. The amount of resources being used at time-step t
is denoted by wt and is given by

wt =
∑
j∈Jt

wj .

In this work, we assume that jobs may take any amount of
resources from a machine in order to have their requirements
satisfied, i.e., resources can be freely and arbitrarily decom-
posed. Applications composed of several independent tasks fit
well into this scenario. Therefore, jobs in Jt can be executed
if mt ≥ dwte.

The utilisation level of the system at time-step t is denoted
by ut and is given by

ut =
wt

mt
.

In every time-step t, users of a cloud service typically want
to keep ut restricted to a certain interval whose lower and
upper bounds are denoted by L and U , respectively, with 0 ≤
L ≤ U ≤ 1.0. Whenever ut becomes either smaller than L or
larger than U , resources (i.e., machines) have to be deactivated

or activated, respectively, if we wish to bring the utilisation
level to interval [L,U ].

A challenging task associated to auto-scaling operations
is defining the step size, which refers to the number s
of machines that should be activated or deactivated. Since
deviations from [L,U ] are undesired, we introduce a metric
called Auto-scaling Demand Index (ADI) in order to evaluate
the quality of auto-scaling strategies. ADI is represented by σ
and is defined as follows:

σ =
∑
t∈T

σt,

where

σt =


L− ut if ut ≤ L,
0 if L < ut < U,

ut − U otherwise.

Intuitively, ADI is the sum of the distances between ut and
[L,U ] for each t, so an optimal auto-scaling strategy according
to this metric is the one that delivers minimum σ.

B. Strategies for Triggering Auto-scaling Operations

We consider in this work the following strategies for trig-
gering auto-scaling operations.

Reactive. In the Reactive strategy, an auto-scaling operation
is triggered at time-step t if ut < L or if ut > U .

Conservative. In the Conservative strategy, an auto-scaling
operation is triggered at time-step t if ut−3 < L, ut−2 < L,
ut−1 < L, and ut < L or if ut−3 > U , ut−2 > U ,
ut−1 > U , and ut > U . That is, the pool of resources
will only be changed if deviations in system utilisation of the
same nature (i.e., either always above U or always below L)
have been observed in the last four time-steps. We chose step
windows of size four because preliminary experiments, based
on the workloads used in our evaluation, showed that this
configuration delivers better results. One could configure the
window according to workload characteristics.

Predictive. The Predictive strategy is a variation of Reactive
where decisions about auto-scaling operations are taken not
according to ut, but to u′t+1, an estimate of the system
utilisation level on time-step t+1 that is computed as follows:

u′t+1 =

{
βu′t + (1− β)ut if t > 0,

0 otherwise,

for β ∈ [0, 1]. Preliminary results motivated the choice of
β = 0.1, so we will make no further comments about this
parameter in this work.

C. Strategies for Setting Auto-scaling Step Sizes

Once an auto-scaling operation has been triggered, the next
decision is the choice of an adequate step size s. We consider
the following strategies.



Fixed. In this strategy, step size s is a fixed parameter defined
by the auto-scaler user, and its value is employed for all scale-
in (shrink) and scale-out (expand) operations.

Adaptive. We introduce a strategy that, in each time-step t,
computes a step size st according to the current utilisation
level ut. We describe below how st should be computed.

If ut > U , the system has to perform a scale-out operation,
that is, it has to expand mt by some value s. However,
if s is either too small or too large, the utilisation level will
potentially stay greater than U . For scale-in operations, the
situation is analogous. These problems are depicted in Fig-
ures 3(a) and 2(a), and their optimal counterparts are presented
in Figures 3(b) and 2(b), respectively. Our algorithm tries to
avoid these situations by activating a number of machines that
would bring the system to a satisfactory utilisation level for wt.

An upper bound on s during scale-out operations is given
by

utmt

mt + s
≥ L

utmt ≥ Lmt + Ls

s ≤ mt
ut − L
L

,

while a lower bound on s is given by

utmt

mt + s
≤ U

utmt ≤ Umt + Us

s ≥ mt
ut − U
U

.

If ut < L, the number s of machines that have to be
deactivated is bounded by

utmt

mt − s
≥ L

utmt ≥ Lmt − Ls

s ≤ mt
L− ut
L

and by

utmt

mt − s
≤ U

utmt ≤ Umt − Us

s ≥ mt
U − ut
U

.

For both situations, let us denote by Lt and by Ut the
lower bound and the upper bound derived according to the
inequalities above.

Any value in [Lt, Ut] can be selected in auto-scaling oper-
ations. Large values for scale-in operations and small values
for scale-out operations are suitable for system administrators
having an “aggressive” profile, whereas the opposite choices
are more “conservative”. In order to incorporate these prefer-
ences to the Adaptive strategy, we consider an “aggressiveness

TABLE I
SUMMARY OF WORKLOAD INFORMATION.

Workload ID Max Machines Tasks
1 2591 8,447,501
2 738 522,696
3 1806 108,962
4 3099 576,246
5 84 158,554
6 3302 6,976,047
7 3224 17,193
8 1048 1,410,776

level” parameter α ∈ [0, 1]. More precisely, given α, for scale-
in operations, the value of st is

st = (1− α)Lt + αUt,

while the value of st for scale-out operations is

st = αLt + (1− α)Ut.

IV. EVALUATION

The evaluation aims at comparing different auto-scaling
strategies using Auto-scaling Demand Index (ADI) as metric.
We describe relevant details and the process of utilising trace
logs from a production data centre cluster from Google,
explain the experiments, and present result analysis.

A. Workloads

Google made trace logs publicly available from one of its
production data centre clusters, which contains approximately
12K servers and spans a period of one month [1]. The logs
contain records of user jobs submitted to the cluster, their
CPU consumption, duration, and which machines they used.
Each job contains a list of tasks associated with it. These tasks
represent the jobs we modelled in Section III. Measurements
in the traces have a fixed time interval of 5 minutes.

The traces have 933 distinct and anonymous identifiers, so
it is not possible to know if an isolated profile refers to an end-
users or to a service. Our evaluation scenario requires actual
cloud services that need to expand/reduce their computing
capacity. Therefore, to translate sets of identifiers into services,
we grouped users with similar CPU consumption behaviour
over time using a clustering technique, described below.

For each user u that submitted one or more jobs to the data
centre cluster, we extracted a list of triples (t, wt,u, rt,u) ∈ T ×
R+×[0, 1], where t denotes the current time-step, wt,u denotes
the average amount of resources requested on the previous 5
minutes by jobs of u (see Section III), and rt,u denotes the
normalization of wt,u in relation to all the other utilisation
measurements for the same user, i.e.,

rt,u =
wt,u

max
t′∈T

wt′,u
.
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(b) Workload 2.
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(c) Workload 3.

0 5 10 15 20 25 30
Time (days)

0

20

40

60

80

100

C
P

U
U

sa
ge

(%
)

(d) Workload 4.
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(e) Workload 5.
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(f) Workload 6.
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Fig. 4. Workloads after clustering users by their CPU usage pattern into eight groups.
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Fig. 5. Summary of Auto-scaling Demand Index (ADI).

In order to organise workloads whose volumes resemble those
of medium to large service providers, we partitioned users
responsible for submitting jobs from the dataset using k-means
clustering. We opted to use eight groups based on visual
inspection of the results for values between 5 and 15.

The algorithm receives as input vectors x1, x2, . . . , xn in
R|T |, where xi = {r1,ui

, r2,ui
, . . . , r|T |,ui

}, i.e., the j-th ele-
ment of vector xi contains the normalized resource utilisation
level of jobs submitted by user ui at time j. We employed
Euclidean distance between vectors as distance metric. Finally,
the number of clusters was defined in a way to have a
comprehensive set of workloads with different characteristics.

Table I summarises the maximum number of machines
able to meet workloads’ demand and the total number of
tasks for each workload. We observe that the workloads have
a fairly heterogeneous values for both number of machines
and number of tasks. Figure 4 depicts the eight resulting
workloads—each representing a cloud service with different
CPU usage patterns. By having these workloads, we were able
to perform experiments in various realistic scenarios.

B. Experiment Description

We conducted experiments with the workloads described
earlier using several configurations, each consisting of:



• One of the following auto-scaling triggering strategies:
Reactive, Conservative, and Predictive;

• One of the following step size configuration strategies:
Adaptive and Fixed

• An upper bound L ∈ N for the desired utilisation level,
chosen from [39, 59];

• A lower bound U ∈ N for the desired utilisation level,
chosen from [60, 80];

• Value of step size s to be used by the Fixed strategy.

We choose these intervals for L and H because they
contain the values that are typically employed in practice.
We used s = p

100m for every integer p in [1, 50], which
means that the tested step sizes used in the experiments
represented some percentage between 1 and 50 of m, the
total number of resources available in the cluster. Finally, in
every configuration employing the Adaptive strategy, we used
α = 0.5, i.e., st = Lt+Ut

2 . This represents a neutral level of
user aggressiveness. The investigation of the impact of this
parameter deserves a study by itself, thus it was not considered
in this article.

For configurations involving the combination of the Pre-
dictive and the Adaptive strategy, the step size is defined
according to the last utilisation level that has been measured,
that is, according to ut. Preliminary tests that used u′t instead
showed poor results, so this type of configuration was not
considered in this work.

In the following section, we present and analyse the results
of our experiments. We consider only configurations that
employ the best step sizes. More precisely, out of the 50
configurations involving Fixed (one for each step size), an
auto-scaling triggering strategy, and a pair (L,U), we chose
the one delivering minimum ADI for fair comparison reasons.

C. Result Analysis

The results of our experiments are summarised in Figure 5.
Each pair of bars in each graph is associated to the auto-scaling
triggering strategy indicated in the x-axis, and the depicted
values are the sum of all ADIs for every combination of L
and U . Bars on the left and on the right show these sums
for configurations using the Fixed and the Adaptive strategy,
respectively. Finally, for better visualisation, we present the
values in logarithmic scale.

The comparison between strategies for setting up step sizes
shows that there is no clear winner, since each provided the
best results in 4 out of the 8 workloads. However, we remark
that the advantage of Fixed over Active in Workloads 3 and 4
is virtually negligible. Conversely, regarding the auto-scaling
triggering strategies, our results show that Reactive is consis-
tently good, that Predictive oscillates, and that Conservative
is inferior to all of them. The following paragraphs contain
detailed explanations of these results and related findings.

Selecting the best step. One of the key challenges associated
with the adoption of the Fixed strategy is to choose an
adequate step size. Since the value does not change over time,
users have to find a compromise between selecting values that
are good for small changes and values that are better for large
oscillations in the system utilisation.

Difficulties on the selection of adequate fixed step sizes are
illustrated in Figure 6, which shows the value of step size that
minimises ADI for each pair (L,U) in three workloads. The
graph for Workload 4 is irregular, which is a consequence of its
bursty and peaky behaviour (see Figure 4(d)). For Workload 5,
we observe three values of best step, a phenomenon that can be
explained by the fact that it has three intervals where variations
on the utilisation level are very distinct (see Figure 4(e)).
Finally, for Workload 6, there is a pattern indicating that the
best step size is proportional to the size of the interval [L,U ].
Large step sizes for small intervals would generate frequent
auto-scaling operations for short target utilisation intervals,
such as the one depicted in Figure 3(a).

These observations show that, although Fixed performs
better than Adaptive in certain scenarios, the configuration of
a system employing this strategy demands a certain knowledge
about the characteristics of the workload. This task is specially
challenging if the system utilisation suffers from irregular
variations, since choosing the most adequate step size for
certain periods of time may increase ADI in other intervals.

Step Size Strategies. Figures 5(c), 5(d), and 5(h) show that
the differences between Fixed and Adaptive in Workloads
3, 4, and 8 were marginal, and the explanation lays on their
relatively “predictable” behaviour. Namely, it is reasonable to
expect that, in these cases, step sizes belonging to a certain
range will consistently be better than others and that the
Adaptive strategy will almost always draw values for st from
this range. Therefore, the step size strategy is not the most
important factor in these scenarios.

The Adaptive strategy was better for Workloads 1, 5, and 6
(see Figures 5(a), 5(e), and 5(f)) due to their bursty and peaky
behaviours (see Figures 4(a), 4(e), and 4(f)). In these scenar-
ios, the utilisation level changes abruptly, so Fixed needs a
considerably large number of iterations before reaching the
desired utilisation level (see Figure 2), whereas Adaptive
resizes the resources pool immediately in order to reach the
desired utilisation level. Conversely, the quick reaction of
Adaptive has negative consequences if the utilisation level
changes abruptly and come back to normal shortly after. The
occurrence of such events explains why Fixed combined with
short step sizes (see the optimal step sizes for Workload 2 in
Figure 7) delivers better results for Workloads 2 and 7.

Auto-scaling Triggering Strategies. Figure 5 shows that the
Reactive strategy had an excellent performance in our tests.
This can be explained by the fact that it always reacts imme-
diately to any deviation from the desired utilisation interval.
One can also argue that Reactive minimises ADI because it



(a) Workload 4: Irregular. (b) Workload 5: Clustered. (c) Workload 6: Patterned.

Fig. 6. Different behaviours of best step depending on workload characteristics.

(a) Reactive strategy. (b) Conservative strategy. (c) Predictive strategy.

Fig. 7. Optimal step sizes for Workload 2 for different triggering auto-scaling strategies.

does not sacrifice ADI in favour of some other metric, such
as the number of active resources, QoS, and the number of
auto-scaling operations.

The Conservative strategy performed poorly in all the
workloads, since it waits for the occurrence of four undesired
utilisation levels in a row and only starts to react properly after
suffering several ADI penalties. We remark that the results
could have been more favourable to Conservative if another
metric had been employed, such as the number of auto-scaling
operations.

Finally, the Predictive strategy was also typically worse
than Reactive, but the differences were not as large as the ones
involving Conservative. While the same argument used in the
previous paragraph may serve to explain why Predictive is
superior to Conservative, the estimation of u′t had a significant
impact in the results. For Workloads 3, 4, and 8, which were
the more “predictable” ones, the exponential smoothing tech-
nique delivered poor estimations and lead to several “wrong”
auto-scaling operations. For the other workloads, the forecast
was better and, in cases were the workload was peaky and

bursty, its results were very similar to those delivered by
Reactive (e.g., Workloads 1, 2, and 6).

Selection of Utilisation Interval. The performance of the
auto-scaling strategies are closely related to the size of the
intervals [L,U ] in several workloads. It is clear that ADI
penalties increases as U−L decreases, since the interval where
utilisation levels are acceptable is smaller. However, there are
some intrinsic aspects from the workloads that deserve careful
attention.

In the case of Workload 3, we remark that the system
utilisation belonged most of the time to interval [50, 80].
Figure 8(a) shows that configurations employing the Reactive
strategy performed well if L ≤ 50, while those using L > 50
were considerably worse. Workload 4 presents higher varia-
tions than Workload 3, so while the same phenomenon can
be observed in this case, the changes in ADI are smoother
(see Figure 8(b)). Finally, the same graph for Workload 5
shows that this decay in performance applies to both step size
strategies (see Figure 8(c)).

This happens because there is a certain interval to which



(a) Reactive strategy.

(b) Conservative strategy.

(c) Predictive strategy.

Fig. 8. Auto-scaling Demand Index (ADI) as a function of target utilisation
interval.

most utilisation levels belong to. Once the interval becomes
too small, ut will be very frequently out of [L,U ]. Differently
from Workloads 3 and 4, we see that in Workload 5 the interval
would have to be very large, and therefore the performance
of both strategies (fixed and adaptive) decays with the size of
the target utilisation interval.

V. RELATED WORK

Projects related to our work fall into categories of schedul-
ing and cloud computing auto-scaling.

Scheduling is a well-studied topic in several domains
for which the number of theoretical problems, solution ap-
proaches, and practical applications is considerably large [2],
[3]. Commonly used algorithms include FIFO, priority-based,
deadline-driven, hybrid approaches that use backfilling tech-
niques [4], among others [5], [6]. In addition to priorities
and deadlines, other factors have been considered, such as
fairness [7], energy-consumption [8], and context-awareness
[9]. Moreover, utility functions were used to model how the
importance of results to users varies over time [10], [11].

Related to our work is Amazon CloudWatch [12], which is
a monitoring system to help deciding when Cloud resources
need to be modified. In this system, users are responsible for
specifying L and U and may not know how to properly setup
these values. Microsoft Azure Auto-scaling system [13] also
allows users to specify these auto-scaling parameters, but suf-
fers the same limitation from Amazon platform. Scryer [14],
from Netflix, is an auto-scaling engine that uses predictive
models to know when resources should be added or removed.
Its auto-scaling strategy is used internally by the software
itself, and thus users do not interact or specify auto-scaling
thresholds and policies.

Ming et al. [15] proposed an architecture that deals with
auto-scaling focusing on meeting user deadlines. However,
it does not consider helping users to define auto-scaling
thresholds and resource change steps. Shen et al. [16] pre-
sented a system to automate elastic resource scaling for cloud
computing environments. Their system does not require prior
knowledge about the applications running in the cloud. Other
projects consider auto-scaling in different scenarios, such as
auto-scaling for MapReduce applications [17], [18], vertical
versus horizontal auto-scaling [19], operational costs [20],
and integer model based auto-scaling [15]. A. Ali-Eldin et
al. [21] introduced a tool to analyse and classify workloads
and assign the most suitable auto-scale controllers based on
workload characteristics. Similar to our work, A. Ali-Eldin et
al. also identified the challenge aspect of developing workload
predictors. Recently, we explored the use of user patience
information to make better auto-scaling decisions [22].

Our study aims at enhancing existing work on auto-scaling
by understanding how to define parameters for this Cloud
functionality and how they impact Auto-scaling Demand
Index (ADI).



VI. CONCLUSION

In this article we investigated auto-scaling strategies applied
to various workload characteristics for cloud computing en-
vironments. These strategies involve the definition of when
to trigger auto-scaling operations and how to modify the
original resource pool depending on the workload variations
over time. Our experiments utilised real-world data from a
Google cluster, which contains millions of jobs that were
grouped to enable the evaluation under different scenarios.

The main contributions of this work are (i) the defini-
tion of Auto-scaling Demand Index (ADI) to measure the
quality of auto-scaling strategies; (ii) an Adaptive strategy
that configures step sizes according to the current system
utilisation level; and (iii) the findings from our experiments
involving two step size configuration strategies (Adaptive and
Fixed) and three auto-scaling triggering strategies (Reactive,
Conservative, and Predictive).

The main lessons of our evaluation are:

• It is possible to use Fixed for auto-scaling when the
system utilisation (or any performance metric) is regu-
lar and well-known. If workloads are irregular, bursty,
and/or peaky, Adaptive delivers lower values of ADI in
comparison to Fixed;

• For peaky and bursty workloads, having a fixed step size
may require a long time until the resource pool provides
the target utilisation interval. This may generate a lost
in QoS or a resource waste. The Adaptive strategy can
then deliver more quickly the target utilisation levels.
However, if, for instance, there is a short high peak, the
Adaptive strategy allocates resources to meet the require-
ments of that peak, but at the following measurement
time, it needs to reduce resources drastically again. In
this case, the Fixed strategy would not go along at the
same level and would deliver a satisfactory performance;

• Predictive strategies may be interesting to help make
auto-scaling decisions, but they are very much depen-
dent on workload characteristics and precise prediction
models as described by A. Ali-Eldin et al. [21]. In
situations where the resource provisioning/releasing time
is similar or shorter than the measurement intervals,
a reactive strategy may adjust the resource pool in a
more precise way because it is based on the actual and
current workload information. In addition, the effects of
the reactive strategy are applied quickly to adapt to the
current workload demand;

• Besides the selection of the step size and the triggering
moment to execute auto-scaling operations, users still
face the challenge of defining the upper and lower bounds
for target system utilisation. We observed that depending
on workload characteristics, certain intervals may lead

to configurations for which any auto-scaling strategy
will have an unsatisfactory performance. Therefore, a
recommender system to provide guidance on this aspect
becomes fundamental to any cloud provider that wants to
enhance user experience.

We believe the findings on the investigated workloads and
strategies can help cloud providers build recommender systems
for auto-scaling operations.
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